REMOVAL OF Zn(II) FROM AQUEOUS SOLUTIONS USING NH4OH TREATED Annona muricata LEAF POWDER

NURUL ATIRA BINTI SENIK

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

TABLE OF CONTENT

ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABREVIATION LIST OF SYMBOLS ABSTRACT ABSTRAK	Page iii iv vi vii viii ix x	
CHAPTER 1 INTRODUCTION		
1.1 Background of the study	1	
1.2 Problem statement	2	
1.3 Significant of study	4	
1.4 Objectives of the study	5	
CHAPTER 2 LITERATURE REVIEW		
2.1 Introduction	6	
2.2 Presence of heavy metal in water	6	
2.3 Plant part as heavy metal adsorbents	8	
2.4 chemically treated adsorbents	11	
CHAPTER 3 METHODOLOGY		
3.1 Materials and Chemicals	17	
3.2 Instrument	17	
3.3.1 Methods		
3.3.1 Preparation of NH ₄ OH	18	
3.3.2 Characterization of AHAM	18	
3.3.3 Preparation of the 1000 Mg/L stock solution of Zinc	19	
3.3.4 Batch adsorption studies	19	
3.3.5 Effect of pH	20	
3.3.6 Effect of AHAM dosage3.3.7 Concentration and Contact time	20 20	
3.3.8 Adsorption isotherm	20	
21010 12002puon 20000000		
CHAPTER 4 RESULTS AND DISCUSSION	23	
4.1 Characterization of <i>Annona muricata</i> leaf powder		
4.2 Determination of pH of zero-point charge	25 26	
4.3 Effect of pH		
4.4 Effect of Dosage	27 39	
4.5 Adsorption rate and kinetics4.6 Adsorption isotherm		

CHAPTER 5 CONCLUSION AND RECOMMENDAT	IONS
5.1 Conclusion	35
5.2 Recommendations	35
CITED REFERENCES	37
APPENDICES	41
CURRICULUM VITAE	44

LIST OF TABLES

Table	Caption	Page
4.1	Pseudo-first-order and pseudo-second-order kinetics parameters calculated for Zn(II) adsorption on AHAMLP	32
4.2	Corresponding isotherm parameters of Zn(II) decided from the Langmuir and Freundlich	34

ABSTRACT

REMOVAL OF Zn(II) FROM AQUEOUS SOLUTIONS USING NH₄OH TREATED Annona muricata LEAF POWDER

The potential of *Annona muricata* leaf powder as an adsorbent for the removal of Zn(II) in the aqueous solution was investigated. The *Annona muricata* leaf powder was characterized before and after the adsorption using a Fourier Infrared (FTIR) spectrometer. The zero-point charge for the adsorbent surface was determined and the result shows that the value of pH_{zpc} was 7.01. The effect of pH, sorbent dosage, initial concentration and contact time were investigated. The maximum uptake of Zn(II) was at pH 6 with 19.15 mg/g. The adsorption equilibrium was established after 20 minutes. The adsorption of Zn(II) by *Annona muricata* leaf powder increased with its initial concentration. Pseudo-second-order showed the best fitting with high correlation ($R^2 = 0.9722$). It was found that the adsorption fits well with the Langmuir isotherm equation. The maximum adsorption capacity for Langmuir isotherm was 77.39 mg/g. AHAMLP can be used as an adsorbent for Zn(II) removal from wastewater due to the fast removal and high adsorption capacity of Zn(II).