SYNTHESIS OF CARBON NANOTUBES (CNTs) USING COBALT/ZINC OXIDE AS A FLOATED CATALYST PRECURSOR AND PALM OIL AS A CARBON PRECURSOR

NURUL HASNIDA BT DAHALAN

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Industrial Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2012

DECLARATION

I hereby declare that the final year project report is based on my original work except for quotation and citations, which have been duly, acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UiTM or other institutions.

N 128:00

Nurul Hasnida Binti Dahalan

Date: 30/1/2012

ACKNOWLEDGEMENTS

Assalamualaikum W.B.T

In the name of Allah, The Almighty and The Most Graceful. First and foremost, I praise Allah for his blessing and guidance; therefore I could finish this Final Year Project on the required time.

From the bottom of my heart, I would like to thank my supervisor, Assoc. Prof. Dr. Mohamad Rusop and co-supervisor, Prof. Dr. Saifollah Abdullah for their knowledge and wisdom that they had given to me, my senior Mr. Syazwan Afif (Master Student) and Miss Maryam Mohamad (Master Student) for her helpful guidance and knowledge. With their helpful guidance, tips and critiques I could perform this final year project. I'm also deeply grateful for having informative and reliable resources for reference from the internet, journals and text books. They have been very helpful and accurate. Throughout this subject, I gain a lot of information and knowledge on writing a final year project especially the topic that I'm doing that is Synthesis of Carbon Nanotubes using Cobalt/Zinc Oxide as a Floated Precursor Catalyst and Palm Oil as a Carbon Precursor. Finally, my thanks again for all the individuals involved and contributed in this final year project.

iii

TABLE OF CONTENTS

DECLARATION	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix
ABSTRACT	х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Significant of study	3
1.3	Problem statement	3
1.4	Objective of the study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Carbon Nanotubes			
	2.1.1	Introduction		5
	2.1.2	Types of Carbon Nanotubes		5
		a) Single Wall Carbon Nanotubes (SWCNT)		5
		b) Multi Wall Carbon Nanotubes (MWCNT)		6
	2.1.3	Synthesis of CNTs		7
		a) Arc Discharge Method		7
		b) Laser ablation		8
		c) Chemical Vapor Deposition (CVD)		10
	2.1.4	Properties of CNTs		11
		a) Mechanical Properties		11
		b) Electrical Properties		12
		c) Optical Properties		12
	2.1.5	Application of CNTs	17	13
		a) Composite		13
		b) Field Emission		13
		c) Electrochemistry		14
		d) Electronic		14
2.2	Cobalt	t/Zinc Oxide Catalyst Precursor		
	2.2.1	Cobalt		15

ABSTRACT

SYNTHESIS OF CARBON NANOTUBES USING COBALT/ZINC OXIDE AS A FLOATED CATALYST PRECURSOR AND PALM OIL AS A CARBON PRECURSOR

Vertically aligned carbon nanotubes (VACNTs) have been synthesized in a thermal catalytic chemical vapor reactor using natural palm oil as the carbon source. The main motivation of the used natural palm oil as the carbon precursor because to provide "green" alternatives of cheap and renewable raw materials for CNT production. The growth of vertically aligned CNTs nanostructures will be prepared at different temperature and molarity. To get the image of the CNTs produced by same method but different parameters we characterized it with Field Emission Scanning Electron Microscope (FE-SEM) and also determine the Raman Spectra by the Raman Spectroscope (RS) characterization. Futhermore, we also the FTIR spectrum using Fourier Transform Infra Red Spectroscopy (FTIR). Based on this research, the optimize temperature to produce vertically aligned CNTs is 800°C. While for the effect of the bimetal Cobalt/Zinc Oxide catalyst, the optimize molarity of Zinc Oxide is 0.15 mol.

X