THE EFFECT OF RADICAL SCAVENGING ACTIVITY ON CONGO RED DYE DEGRADATION PROCESS USING UV LAMP AND AI₂O₃ AS CATALYST

SITI SARAH BT ZAKARIA

Final Year Project Submitted in Partial Fulfilment of the Requirement for the Degree of Bachelor of Science (Hons.) Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2019

TABLE OF CONTENTS

	Page
ACKNOWLEDMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES LIST OF FIGURES	vi
LIST OF FIGURES LIST OF ABBREVIATIONS	vii viii
ABSTRACT	ix
ABSTRAK	х
CHAPTER 1 INTRODUCTION	1
1.1 Background of Study	2
1.2 Problem Statement	3
1.3 Significance of Study	
1.4 Objectives	4
CHAPTER 2 LITERATURE REVIEW	5
2.1 Introduction	5
2.2 Effluents from textile industry	5
2.3 Azo dyes	7
2.3.1 Congo red dye	8
2.4 Treatment method	8
CHAPTER 3 METHODOLOGY	10
3.1 Materials	10
3.1.1 List of Chemicals	10
3.1.2 Glassware and Apparatus	10

3.1.3 Equipment and Analytical Instrument 11

3.2 Congo red dye solution	11
3.3 Preparation of pH 3.0 and pH 7.0 dye solution	11
3.4 Al ₂ O ₃ as catalyst	12
3.4.1 Al ₂ O ₃ in pH 3 dye solution	12
3.4.2 Al ₂ O ₃ in pH 7 dye solution	13
3.5 Sodium Carbonate (Na ₂ CO ₃) solution preparation	13
3.6 Methods	13
CHAPTER 4 RESULTS AND DISCUSSION 4.1 Degradation of Congo Red dye by using Al ₂ O ₃ as catalyst	15
4.2 The effect of radical scavenging activity on Congo Red dye Degradati4.2.1 The effect of the addition of Sodium Carbonate	16
	24
CHAPTER 5 CONCLUSION AND RECOMMENDATION	
5.1 Conclusion	33
5.2 Recommendations	33
CITED REFERENCES	34
APPENDICES	35
CURRICULUM VITAE	39
	43

LIST OF TABLES

Table	Caption	Page
4.1	The absorbance of pH 3 Congo Red solution with catalyst for 10 minutes	16
4.2	The absorbance of pH 7 Congo Red dye solution with catalyst for 10 minutes	18
4.3	The absorbance of dye at the reaction time with catalyst and in the presence of Na_2CO_3 as radical scavenger using pH 3	24
4.4	The absorbance of dye at the reaction time with catalyst and in the presence of Na_2CO_3 as radical scavenger using pH 7	28

ABSTRACT

THE EFFECT OF RADICAL SCAVENGING ACTIVITY ON CONGO RED DYE DEGRADATION PROCESS USING UV LAMP AND Al₂O₃ AS CATALYST

Synthetic organic dyes are used in the textile, paper, plastic, food, and other industries. About half of these dyes are azo compounds, such as methyl orange (MO), Congo red (CR), and direct black 38 (DB38), which contain chromophore (-N=N-) in their molecular structures. However, effluents containing azo dyes are discharged into lakes, rivers, or ground waters during the dyeing process and contain many health hazards such as mutagenic and carcinogenic. These dyes can lead to very serious environmental problems, due to their good stability under ambient conditions. Therefore, scientists have focused on eliminating azo dyes from wastewater to satisfy stringent environmental regulations. Up to now, various treatment methods such as physical methods and chemical methods have been used to remove azo dyes. However, these methods cannot completely destroy contaminants and only transfer dyes from the solution to the adsorbent. As such, the dyes are transformed into their carcinogenic, mutagenic, or toxic intermediates, which cause secondary pollution. Thus, inexpensive and environment-friendly processes for the complete conversion of pollutants must be developed. In this study, the effectiveness of Al₂O₃ has been studied and investigated. The initial concentration of Congo Red dye in the reaction was 10⁻⁴ M. The effects of UV irradiation, pH and the addition of different concentration of salt, Na₂CO₃ were studied. The results indicated that dye degradation become more efficient in pH 3.0 which is acidic compared to pH 7.0 which is neutral solution. The degradation percentage for pH 3.0 is up to 96.12% while only 87.98% for pH 7.0. The presence of different concentration of salt gave huge effect to the dye degradation efficiency. Increasing the salt concentration to 10⁻¹ M in pH 3.0 dye solution, the percent of degradation is 42.19% while the increasing of salt concentration to 10⁻¹ M in pH 7.0 dye solution, the percent degradation is only 15.48%.