EVALUATION OF HEAVY METAL CONCENTRATIONS IN DIFFERENT LOCAL BRANDS OF BOTTLED DRINKING WATER

NURUL NADIRAH BINTI ZULKIFLI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

TABLE OF CONTENTS

		Page
ACKI Tari	NOWLEDGEMENTS F OF CONTENTS	iii iv
LIST	OF TABLES	vi
LIST	OF ABBREVIATIONS	vii
ABST	RACT	x
ABST	RAK	xi
CHAI	PTER 1 INTRODUCTION	1
1.1	Background of study	1
1.2	Problem statement	2
1.3	Significance of study	3
1.4	Objectives of study	4
CHAI	PTER 2 LITERATURE REVIEW	5
2.1	Bottled drinking water	5
2.2	Heavy Metal	6
	2.2.1 Arsenic (As)	7
	2.2.2 Cadmium (Cd)	8
	2.2.3 Chromium (Cr)	8
	2.2.4 Copper (Cu)	9
	2.2.5 Lead (Pb)	9
	2.2.6 Mercury (Hg)	10
2.3	Instrumental Analysis	10
2.4	Health risk assessment	11
	2.4.1 Chronic daily intake (CDI)	12
	2.4.2 Non-Carcinogenic and Carcinogenic Analysis	12
CHAI	PTER 3 METHODOLOGY	14
3.1	Materials	14
	3.1.1 Chemicals	14
	3.1.2 Apparatus	14
	3.1.3 Instrumental analysis	14
3.2	Sample Collections	15
3.3	Sample Preparation	15
3.4	Sample Analysis	15

3.5	Quality assurance and quality control (QA/QC)	16		
3.6	Health risk assessment	17		
	3.6.1 Chronic daily intake (CDI)	17		
	3.6.2 Non-Carcinogenic and Carcinogenic Analysis	18		
3.7	Standard Limit by WHO, USEPA, and MOH Malaysia	19		
СНАР	PTER 4 RESULTS AND DISCUSSION	20		
41	Heavy Metals in Bottled Drinking Water	20		
	4.1.1 Physicochemical Characteristic	$\frac{20}{20}$		
	4.1.2 Heavy Metals Analysis	21		
4.2	Health Risks Assessment	23		
	4.2.1 Chronic Daily Intake (CDI) of Heavy Metals	23		
	4.2.2 Non-Carcinogenic Analysis	24		
	4.2.3 Carcinogenic Analysis	25		
4.3	Comparison with standard from WHO, USEPA, and			
	MOH Malaysia.	26		
СНАР	TER 5 CONCLUSION AND RECOMMENDATIONS	28		
5.1	Conclusion	28		
5.2	Recommendations	28		
CITE	CITED REFERENCES 29			
APPE	33			
CURF	39			

LIST OF TABLES

Table	Caption	Page
2.1	Comparison of detection limits of heavy metals in drinking water using FAAS and ICP-MS.	11
3.1	The details of water samples in this study.	15
3.2	The values used for variables in Equation (1).	17
3.3	The Oral reference dose (RfD) of heavy metals.	19
3.4	The Slope factor (SF) values for heavy metal.	19
3.5	Summary of WHO, USEPA, and MOH Malaysia guideline values for drinking water samples.	19
4.1	The physiochemical characteristic of the water samples in this study.	20
4.2	The analysed concentration of heavy metals in selected brands and control (mg/L) (mean \pm standard deviation, n=3).	21
4.3	The Chronic daily intake (CDI) of heavy metals in drinking water (mg/L/day).	23
4.4	Non-carcinogenic analysis to the human health by ingestion of drinking water samples.	24
4.5	The cancer risk to the human health from ingestion of drinking water samples.	25
4.6	The comparison of permissible limits with the analysed heavy metals in drinking water samples (mg/L).	27

ABSTRACT

EVALUATION OF HEAVY METAL CONCENTRATIONS IN DIFFERENT LOCAL BRANDS OF BOTTLED DRINKING WATER

High concentration of heavy metals in bottled drinking water have affected many people around the world in a long-term effect. The objectives of this study are to determine selected heavy metal, to estimate the health risks, and to compare it with a World Health Organization (WHO), United States Environmental Protection Agency (USEPA), and Ministry of Health (MOH) Malaysia. Four different brands of drinking water were purchased from the supermarket as the samples in this study. All water samples were labelled as Sample A, B, C, and D. The pH, temperature, and types of heavy metals presence in the drinking water samples were identified and the Chronic Daily Intake (CDI), Hazard Quotient (HQ), and Lifetime Cancer Risk (LCR) were calculated. All four samples were analyzed using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) for determination of heavy metals. The average concentration of heavy metals were compared with WHO, USEPA, and MOH Malaysia guideline. The pH for all drinking water samples were within the limits. The temperature for all samples were slightly higher than the recommended temperature due to the external factors. Types of heavy metal exist in the drinking water samples were Al, Fe, Mg, and Pb. The highest heavy metal concentration found was Pb in the Sample D with 0.46 mg/L and is exceeding the permissible limit. As a conclusion, all drinking water samples are safe to be consumed as all water samples were HQ < 1 and within the acceptable range of LCR values.