ONE POT HYDROTHERMAL METHOD SYNTHESIZED AND CHARACTERIZED NaFePO4 AS CATHODE MATERIAL FOR SODIUM ION BATTERY

SITI NURATHIRAH BINTI AWANG

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	х

CHAPTER 1 INTRODUCTION

Background of study	1
Problem Statement	3
Significance of study	3
Objectives	4
	Problem Statement Significance of study

CHAPTER 2 LITERATURE REVIEW

2.1	Lithium-ion battery		
2.2	Sodium ion battery		
2.3	Cathode materials		
2.4	Method involved in synthesizing of the cathode materials		
	2.4.1 Sol gel method	9	
	2.4.2 Solid state reaction	10	
	2.4.3 Hydrothermal method	11	

CHAPTER 3 METHODOLOGY

13 14 14 14
14
14
15
15
16
17
18

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Characterization			
	4.1.1	Thermogravimetric Analysis (TGA)	20
	4.1.2	Attenuated Total Reflectance Fourier Transform Infrared	23
		(ATR-FTIR).	
	4.1.3	X-ray Diffraction (XRD)	25
	4.1.4	Scanning Electron Microscope with Energy Dispersive	27
		X-ray Spectroscopy (SEM-EDS)	
CHA	PTER	5 CONCLUSION AND RECOMMENDATIONS	32
OIT		REDENICEC	24

CITED REFERENCES	34
APPENDICES	39
CURICULUM VITAE	43

LIST OF TABLES

,	Table	Caption	Page
	3.1	The chemical used in the laboratory	13
	4.1	TGA results of NaFePO ₄ precursor	22
	4.2	ATR-FTIR results of powdered sodium iron phosphate	23
		cathode materials	
	43	EDS result for NaFePO ₄ cathode materials	31

ABSTRACT

ONE POT HYDROTHERMAL METHOD SYNTHESIZED AND CHARACTERIZED NaFePO4 AS CATHODE MATERIALS FOR SODIUM ION BATTERY

Sodium iron phosphate (NaFePO₄) cathode material in a sodium ion battery was synthesized by a Polyethylene glycol (PEG) assisted by hydrothermal method. Besides, it is physical characterization was being analyzed by using Thermogravimetric Analysis (TGA), Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR), X-ray Diffraction (XRD) and Scanning Electron Microscope with Energy Dispersive X-ray Spectroscopy (SEM-EDS). After the sample was annealed at the furnace for 6 hours in the temperature 500°C, the dried powder will be run for analysis of TGA. That temperature was chosen as calcination temperature because the TGA curve becomes constant and no mass loss occur at temperature above this temperature. It indicates that the reaction was totally completed. In the ATR-FTIR analysis, the presence of iron phosphate in the sample was confirm by the peak at 555 cm⁻¹ that indicate the bending vibrations of metal iron. Besides, cathode material can be analysed by XRD and it indicate the amorphous phase. Under magnification of SEM-EDS, the morphology of cathode material particles was observed in heterogeneous and a lot of particles aggregiation.