SYNTHESIS OF THE SILVER NANOPARTICLES USING MORINDA CITRIFOLIA ROOTS FROM WARM WATER EXTRACTS AND THEIR DEGRADATION OF METHYLENE BLUE

NURUL FARZANA BINTI ZAINUDDIN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

TABLE OF CONTENTS

			Page	
ACK	KNOWL	EDGEMENT	iii	
TAB	TABLE OF CONTENTS			
LIST	Γ OF TA	BLES	vi	
LIST	Γ OF FIG	GURES	vii	
LIST	LIST OF ABBREVIATIONS			
	TRACT		X	
ABS	TRAK		xi	
CHA	APTER 1	INTRODUCTION		
1.1	Backg	round of the study	1	
1.2	Proble	em statement	2	
1.3	Signif	icant of study	2 3	
1.4	Object	tives of the study	5	
CHA	APTER 2	LITERATURE REVIEW		
2.1		particles	6	
	-	Plant as silver nanoparticles	6	
2.2	Degra	dation of methylene blue dye	10	
2.3	M. citi	rifolia (Noni)	13	
	2.3.1	Extraction of M. citrifolia	16	
	2.3.2	M. citrifolia as nanoparticles	18	
CHA	APTER 3	3 METHODOLOGY		
3.1	Materi	ials	20	
3.2	Metho	ods	20	
	3.2.1	Preparation of M. Citrifolia root extracts	20	
	3.2.2	Biosynthesis of silver nanoparticles	20	
	3.2.3	Optimization of silver nanoparticles synthesis	21	
	3.2.4	1	21	
	3.2.5	Photocatalytic degradation of dye	22	
CHA	APTER 4	RESULTS AND DISCUSSION		
4.1	MCW	W using UV & FTIR spectrum	23	
4.2	Biosyr	nthesis of silver nanoparticles	25	
4.3	Optim	27		
	4.3.1	MCWW concentration	27	
	4.3.2	Silver Nitrate concentration	28	

	4.3.3 Reaction time	30
	4.3.4 Initial pH solution	31
	4.3.5 Temperature	33
4.4	Fourier Transform Infrared Spectrophotometer (FTIR)	35
4.5	Photocatalytic degradation of MB	36
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 5.1 Summary 5.2 Further study		
CIT	ED REFERENCES	42
APPENDICES		
CUR		

LIST OF TABLES

Table	Caption	Page
2.1	Green synthesis of silver nanoparticles using plant	19
4.1	FTIR spectrum of synthesized MCWW	36
4.2	Percent of degradation with time interval	39
4.3	Degradation of dye using different nanoparticles with exposure time	39

ABSTRACT

SYNTHESIS OF THE SILVER NANOPARTICLES USING MORINDA CITRIFOLIA ROOTS FROM WATER EXTRACTS AND THEIR DEGRADATION OF METHYLENE BLUE

The plant extract-based green chemistry process has recently emerged as one of the active areas of current nanobiotechnological research in view of its simplicity, low cost involvement, higher potential reduction, zero contamination and reduced or lower environmental impact. The objectives of this study are to extract M. citrifolia roots using water based and the synthesized of AgNPs was used for methylene blue (MB) degradation. In this study, the *M.citrifolia* extract was prepared in constant temperature at 60 °C. The root extract was added into AgNO₃ solution and the formation of AgNPs was achieved when the yellow change to brown colour. For optimization, parameters that were involved are MCWW concentration, AgNO₃ concentration, reaction time, initial pH and temperature. The optimum condition was achieved at 5 mL of MCWW concentration, 1.0 mM of AgNO₃ concentration, 90 min for reaction time, pH 8.6 and temperature at 85 °C. This synthesized of AgNPs was further characterized by using UV-vis spectrophotometer and FTIR. The photocatalytic activity of the synthesized silver nanoparticles was investigated by methylene blue degradation under sunlight. The obtained nanoparticles were characterized by using UV-vis spectrophotometer with an absorbance peak at 434 nm reveal the formation of AgNPs. The MB spectrum was observed at 660 nm and was degraded to 96.88 % in 240 min under sunlight.