SODIUM COPPER OXIDE CATHODE PRODUCTION VIA SOL-GEL METHOD AND CHARACTERIZATION FOR SODIUM ION BATTERIES

NURUL AIN BINTI MOHD NOR

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons) Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2019

TABLE OF CONTENTS

ACKI TABI LIST LIST LIST ABST	NOWL LE OF (OF TA OF FI(OF AB FRACT FRAK	EDGEMENT CONTENTS BLES URES BREVIATIONS		Page iii iv vi vii viii x xi
CHA	PTER 1	INTRODUCTIO	Ν	1
1.1	Backg	ound of the study		1
1.2	Proble	n statement		3
1.3	Signif	cant of study		3
1.4	Object	ives		
CHA	PTER 2	LITERATURE R	EVIEW	5
2.1	Batter			5
2.2	Mater	als for cathode batt	eries	5
	2.2.1	Lithium ion batter	ies	5
	2.2.2	Sodium ion batteri	es	8
2.3	Metho	ls in synthesizing t	he batteries	8
	2.3.1	Hydrothermal met	hod	8
	2.3.2	Solid-state reaction	n	10
	2.3.3	Sol-gel method		11
CHA	PTER 3	METHODOLOG	Y	13
3.1	Mater	als	-	13
	3.1.1	Chemicals		13
	3.1.2	Apparatus		13
	3.1.3	Instruments		13
3.2	Metho	ls		14
	3.2.1	Synthesizing of so	dium copper oxide (NaCuO _x)	14
	3.2.2	Characterization o	f sodium copper oxide cathode material	14
		3.2.2.1 Scanning Electron Microscopy with Energy Dispers		sive
		Spectrosc	copy (SEM-EDS)	15
		3.2.2.2 Thermog	ravimetric Analysis (TGA)	15
		3.2.2.3 X-ray Di	ffraction (XRD)	16
		3.2.2.4 Attenuate	ed Total Reflection-Fourier Transform Inf	rared
		Spectrosc	copy (ATR-FTIR)	17

CHAPTER 4 RESULTS AND DISCUSSION				
4.1	Charac	eterization	18	
	4.1.1	Thermogravimetric Analysis (TGA)	18	
	4.1.2	Attenuated Total Reflection-Fourier Transform Infrared (ATR-		
		FTIR)	20	
	4.1.3	X-ray Diffraction (XRD)	22	
	4.1.4	Scanning Electron Microscopy/Energy Dispersive X-ray		
		Spectroscopy (SEM-EDS)	23	
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 2				
CITED REFERENCES				
APPENDICES				
CURRICULUM VITAE				

LIST OF FIGURES

Figure	Caption	Page
1.1	Elements of Batteries	1
4.1	TGA analysis of sodium copper oxide cathode material in dried gel form	18
4.2	ATR-FTIR spectrum of powder sodium copper oxide cathode material	20
4.3	X-ray diffraction of sodium copper oxide	22
4.4	SEM image of powder NaCuO _x cathode material at Magnification $100x$	23
4,5	SEM image of powder NaCuO _x cathode material at Magnification 5000x	24
4.6	SEM image of powder NaCuO _x cathode material at Magnification 10000x	25
4.7	EDS profile analysis of sodium copper oxide	26

ABSTRACT

SODIUM COPPER OXIDE CATHODE PRODUCTION VIA SOL GEL METHOD AND CHARACTERIZATION FOR SODIUM ION BATTERY

Sodium Copper Oxide (NaCuO_x) cathode material in a sodium-ion battery was synthesized by using sol-gel method assisted by Polyvinyl Alcohol (PVA). Its physical characterization was being analyzed by using Thermogravimetric Analysis (TGA), Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy, X-ray Diffraction (XRD) and Scanning Electron Microscopy with Energy Dispersive Electroscopy (SEM-EDS). After TGA analysis, the calcination temperature for the cathode material was determined. The temperature 800°C was chosen because the TGA curve becomes flat and no mass loss occurs at temperature 800°C. It indicates that the completion of reaction. In the ATR-FTIR analysis, the presence of metal oxide was confirmed by the peak 544.12cm⁻¹ that indicating the M-O bond. Besides that, the peak at 1409.12 cm⁻¹ and 876.81 cm⁻¹ were corresponding to O-C-O and C-O-H bond respectively. The morphology of cathode material when observed under SEM-EDS, the particles were observed smooth surface and less agglomerated. Based on the XRD, the particles were observed as crystalline nature. In this study, the confirmation about electrochemical ability of synthesized NaCuO_x cathode material cannot be made because there is no electrochemical characterization was being performed.