ISOLATION OF ANTIOXIDATIVE CONSTITUENTS OF *Gynura* procumbens LEAVES (SAMBUNG NYAWA) AND ITS ANTIBACTERIAL POTENCY AGAINST PLANT PATOGEN

NUR SUHADA BINTI AZMAN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2019

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	Х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background of the study	1
1.2	Problem statement	3
1.3	Significance of study	3
1.4	Objectives of study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Family of Asteraceae	5
2.2	Gynura Species	6
	2.2.1 Gynura segetum	6
	2.2.2 Gynura bicolor	7
	2.2.3 Gynura pseudochina	8
	2.2.4 Gynura nepalensis	9
	2.2.5 Gynura formosana	10
2.3	Gynura procumbens	10
2.4	Antimicrobial activity of G. procumbens	12
2.5	Secondary Metabolites of G. procumbens	15

CHAPTER 3 METHODOLOGY

3.1	Materials		
	3.1.1	Raw materials	17
	3.1.2	Chemicals	17
3.2	Appara	atus and instruments	18
3.3	Phytoc	chemical Screening Test	19
	3.3.1	Test for alkaloids	19
	3.3.2	Test for tannins	19
	3.3.3	Test for saponins	19
	3.3.4	Test for steroids and triterpenoids	19
	3.3.5	Test for cardiac glycosides	20
	3.3.6	Test for flavonoids	20
3.4	Extrac	tion process-consecutive soaking	20
3.5	FTIR	-	21

3.6	Thin 1	ayer Chromatographic (TLC) analysis	21
	3.6.1	Preparing TLC developing container	21
	3.6.2	Preparing the TLC plates	21
	3.6.3	Applying sample on the TLC plates	22
	3.6.4	Developing the plates	22
	3.6.5	Visualizing the plates	22
3.7	Disc I	Diffusion Method	23
	3.7.1	Preparation of standardize bacteria solution	23
	3.7.2	Preparation of tested extracts	23
3.8 Isolation of compounds from <i>G. procumbens</i>		24	
	3.8.1	Setting up TLC Developing tank	24
	3.8.2	Preparing the TLC plate	24
	3.8.3	Developing the plate	24
	3.8.4	Isolating the product	25
3.9	Nucle	ar Magnetic Resonance (NMR)	25

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Phytochemical Screening Test	26
4.2	Thin Layer Chromatography Phytochemical Analysis	27
4.3	FTIR Analysis	32
4.4	Isolation of Active Compounds using Preparative TLC	33
4.5	Proton NMR Interpretation of S1 and S2 Compounds	34
	4.5.1 Compound S1	34
	4.5.2 Compound S2	35
4.6	Antimicrobial Assay	36

CHAPTER 5 CONCLUSION AND RECOMMENDATION 39

CITED REFERENCES	40
APPENDICES	45
CURRICULUM VITAE	48

LIST OF TABLES

Table	Caption	Page
3.1	Positive Observations for Various Visualizing Methods/Reagents	35
4.1	Result for the phytochemicals screening test	38
4.2	TLC characteristic of compound in PE extract	40
4.3	TLC characteristic of compound in EA extract	41
4.4	TLC characteristic of compound in MeOH extract	42
4.5	IR spectrum for all crude extract and interpretation	44
4.6	Antibacterial activity for each crude extract of <i>G</i> . <i>procumbens</i> leaves	48

ABSTRACT

ISOLATION OF ANTIOXIDATIVE CONSTITUENTS OF *GYNURA PROCUMBENS* LEAVES (SAMBUNG NYAWA) AND ITS ANTIBACTERIAL POTENCY AGAINST PLANT PATOGEN

Gynura procumbens known as "Sambung Nyawa" which is from Asteraceae Family was used in this study to determine the antioxidative components and antimicrobial properties. G. procumbens is a plant that contain active secondary metabolites known as phytochemicals and commonly used as traditional medicine to treat many types of diseases and illness. The leaves of G. procumbens was extracted using three different polarities of solvents such as petroleum ether, ethyl acetate and methanol and was analysed by phytochemical screening using several spraying reagents to isolate the antioxidative constituents. The phytochemical screening tests revealed the presence of tannins, saponins, triterpenoids and flavonoids. The isolated compound from PE extract was labelled as S1 and isolated compound from MeOH extract was labelled as S2. The isolated compounds were further analysed by using FTIR and ¹H NMR spectroscopy to predict the structures. Based on the results, the S1 compound might be an alkaloid glycoside and S2 compound might be a phenolic glycoside. As for the antibacterial potency, the most effective extract is EA extract since it has the biggest inhibition zone of 7 mm compared to other extracts.