EFFECT OF RARE EARTH METAL OXIDES (Nd₂O₃, Sm₂O₃ and Eu₂O₃) ON PROPERTIES OF CELLULOSE BASED COMPOSITE POLYMER ELECTROLYTE

NOORZAIHAN BINTI MOHD ZAHALI

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons) Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2019

TABLE OF CONTENTS

ACKNOWLEDGEMENTS			iii	
TABLE OF CONTENTS LIST OF TABLES				
				LIST
LIST OF ABBREVIATIONS				
ABSTRACT ABSTRAK				
СНА	PTER 1	INTRODUCTION		
1.1	Backg	round	1	
1.2	Proble	em statement	2	
1.3	Signifi	icance of study	3	
1.4	Object	tives of study	4	
СНА	PTER 2	LITERATURE REVIEW		
2.1	Solid _I	polymer electrolyte	5	
2.2	Carbo	xymethyl cellulose	7	
2.3	Comp	osite polymer electrolyte	10	
СНА	PTER 3	METHODOLOGY		
3.1	Materi	ials	13	
3.2	Prepar	ration of solid biopolymer electrolyte film	13	
3.3	Sampl	e characterization	16	
	3.3.1	Electrochemical impedance spectroscopy	16	
	3.3.2	Fourier transform infrared	16	
	3.3.3	X-ray diffraction	17	
	3.3.4	Tensile strength	17	
СНА	PTER 4	RESULTS AND DISCUSSION		
4.1	Carbo	xylmethyl cellulose based solid polymer electrolyte	18	
	4.1.1	Physical properties	18	
	4.1.2	Electrochemical impedance spectroscopy	19	
	4.1.3	Fourier transfrom infrared	22	
	4.1.4	X-ray diffraction	29	
	4.1.5	Tensile strength	31	

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 5.1 Conclusion

33

LIST OF TABLES

Table	Caption	Page
Table 2.1	CMC in SPE film	9
Table 2.2	Ionic conductivity of SPE containing rare earth metal	12
Table 3.1	Sample designation and composition	14
Table 4.1	Composition of CMC with different rare earth metal filler	18
Table 4.2	The effect of rare earth metal on ionic conductivity of solid polymer electrolyte	20
Table 4.3	FTIR vibration frequencies of functional group	23
Table 4.4	Mechanical properties of CMC-30 wt.% LiTFSI-rare earth metal	32

LIST OF FIGURES

Figure	Caption	Page
Figure 2.1	Structure of SPE	6
Figure 2.2	Structure of cellulose	7
Figure 2.3	Structure of cellulose derivatives	8
Figure 3.1	Flow for preparation composite polymer electrolyte	15
Figure 4.1	Photograph of CMC films with a) 0 wt.% LiTFSI, b) 30 wt.% LiTFSI, c) 30 wt.% LiTFSI-10 wt. % rare earth metal filler	19
Figure 4.2	Photograph of semicircle of Nyquist plot of the CMC with a) 0 wt.% LiTFSI, b) 30 wt.% LiTFSI, c) 30 wt.% LiTFSI-10wt.% Nd ₂ O ₃ , d) 30 wt.% LiTFSI-10 wt% Eu ₂ O ₃ , e) 30 wt.% LiTFSI-10 wt% Eu ₂ O ₃	21
Figure 4.3	The ion-polymer interaction in the electrolyte matrix	24
Figure 4.4	FTIR spectra of solid polymer electrolyte	25
Figure 4.5	FTIR spectra CMC-30 wt.% LiTFSI-10 wt.% Nd_2O_3	26
Figure 4.6	FTIR spectra CMC-30 wt.% LiTFSI-10 wt.% Sm_2O_3	27
Figure 4.7	FTIR spectra CMC-30 wt.% LiTFSI-10 wt.% Eu ₂ O ₃	28
Figure 4.8	XRD pattern for CMC-based polymer electrolyte film a) 0% b) 30 wt.% LiTFSI c) 30 wt.% LiTFSI-10 wt.% Nd ₂ O ₃ d) 30 wt.% LiTFSI-10 wt.% Sm_2O_3 e) 30 wt.% LiTFSI-10 wt.% Eu_2O_3	30
Figure 4.9	Tensile strength of CMC-30 wt.% LiTFSI-10 wt.% rare earth metal	32

ABSTRACT

Polymer has semi crystalline properties that makes ion difficult to move caused the SPE has low ionic conductivity. The addition of filler into polymer matrix can increase ionic conductivity. Rare earth metal as filler is less explored in the past. In this study, solid polymer electrolyte (SPE) has been prepared using cellulose carboxymethyl (CMC) as polvmer host. Lithium bistrifluoromethanesulfonimide (LiTFSI) salt as charge carrier and 10 wt.% of three different rare earth metal oxides ; Nd₂O₃, Sm₂O₃ and Eu₂O₃ as filler. SPE film samples were prepared using solution casting method and characterized by electrochemical impedance (EIS), fourier transform infrared (FTIR), x-ray diffraction (XRD) and tensile. Addition of LiTFSI salt increased ionic conductivity of CMC from 9.14019x10⁻⁸ S cm ⁻¹ to 2.2409x10⁻⁷ S cm ⁻¹ but incorporation of rare earth metal to CMC-LiTFSI decreased the ionic conductivity in the order of 4.01523×10^{-8} S cm⁻¹ > 3.81581×10^{-8} S cm⁻¹ > 2.01616×10^{-8} S cm⁻¹. FTIR proved the complexation of LiTFSI with CMC at OH and C=O sites while Nd₂O₃ and Sm₂O₃ interacted at OH site only. The ionic conductivity values were explained further with XRD result that shows the decrease in peak intensity (sample become more amorphous) with addition of LiTFSI to CMC but increase in intensity (sample become more crystalline) with addition of rare earth metal. Incorporation of rare earth metal oxides also reduced the tensile strength of SPE sample. In conclusion, the addition of rare earth metal decreased the ionic conductivity and reduced the mechanical properties of CMC-based SPE.