PRELIMINARY DEVELOPMENT OF MINI ANECHOIC CHAMBER

Thesis is presented in partial fulfillment for the award of the Bachelor of Engineering (Honors) in Electrical UNIVERSITI TEKNOLOGI MARA

SITI ROHAIZA BINTI ZAINOL FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 13500 PERMATANG PAUH, PULAU PINANG

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA

A report submitted to the Faculty of Electrical Engineering, Universiti Teknologi MARA in partial fulfillment of the requirement for the Bachelor of Engineering (Hons) Electrical

This thesis is approved by:

.....

Tuan Hj. Hasnain Bin Abdullah @ Idris (Project Supervisor) Faculty of Electrical Engineering Universiti Teknologi MARA Pulau Pinang

(Date :... 4 MAY 2007)

DECLARATION

This is hereby declared that all materials in this project report are the result of my own work and all the materials, which are not the result of my own work, have been clearly acknowledged in this project report

TABLE OF CONTENTS

DEC	CLARA'	ii		
DEI	DICATI	iii		
ACKNOWLEDGEMENTS ABSTRACT TABLE OF CONTENTS LIST OF FIGURES				iv
ABS	v			
TAI	BLE OF	CONT	ENTS	vi
LIS	T OF FI	GURES	3	ix
LIS	T OF TA	ABLES		xi
LIS	T OF A	BBREV	IATIONS	xii
СН	APTER			PAGE
1	INTF			
	1.1	Backg	ground	1
	1.2	Objec	tive of the Project	2
	1.3	Thesis	s Structure	2
2	PRO			
	2.1	Introd	4	
	2.2	Anten	5	
	2.3	Anten		
		2.3.1	Radiation Pattern Measurement	6
		2.3.2	Directivity Measurement	7
		2.3.3	Gain Measurement	7
		2.3.4	Polarization Measurement	7
	2.4	Absor	8	
		2.4.1	Absorber's Material	9
		2.4.2	Understanding to the Absorber	11
		2.4.3	Performance of an Absorber	14

	2.5	Anechoic Chambers	15			
		2.5.1 Tapered Anechoic Chambers	16			
		2.5.2 Rectangular Anechoic Chambers	17			
3	DESIGN AND DEVELOPMENT OF THE ABSORBERS					
	3.1	The Shape Design				
	3.2	Design the Absorber				
	3.3	Development of the Absorbers				
	3.4	Construct the Prototypes				
	3.5	Absorber Measurement	23			
		3.5.1 First Stage	24			
		3.5.2 Second Stage	25			
		3.5.3 Third Stage	26			
	3.6	Flowchart	27			
4	DEVELOPMENT OF THE PRELIMINARY STAGE OF					
	MIN	NI ANECHOIC CHAMBERS				
	4.1	Introduction to Anechoic Chamber Design	28			
		4.1.1 Chamber Configuration	29			
	4.2	Design a Room as Model of Mini Anechoic Chamber				
	4.3	Assembling the Absorbers into Chamber				
	4.4	Flowchart	33			
5	RESULTS AND DISCUSSION					
	5.1	Introduction				
	5.2	Testing the Absorbers Performance				
		5.2.1 Commercial Absorber	34			
		5.2.2 Testing Absorber for Prototype 1	35			
		5.2.3 Testing Absorber for Prototype 2	39			
	5.3	Testing for Content Carbon				
	5.4	Analysis Stability of the Data				

ABSTRACT

Anechoic chamber is a room that is use to test telecommunication equipment especially microwave antennas. The chamber walls absorb the microwave energy thus preventing any internal reflection. It also prevents external wave from entering the chamber due to its shielding properties and this removes the interference. The advancement of world telecommunication, which has begun to concentrate of waves at frequencies of 2GHz and above, has made testing in open air impractical, in order to verify the actual performance of the equipment under the test. Thus Anechoic Chamber is required. In this project, a preliminary development of mini anechoic chamber was built. The chamber that was built is made from zinc. The purpose of using this material is to avoid the microwave signal from outside. This project focuses on the development and designs the absorber which is the most important element in anechoic chamber. The absorber consists of three major elements; the absorbing cone, which is made of polystyrene, carbon that coats the cone and special paint that joints the carbon and the cone together. This is because the absorber must be able to absorb as much microwave energy as well as not affected by environment. In other words, the environment should not affect the readings inside the chamber and also the absorber itself. The study also focuses on the pyramid shape absorber, which is theoretically easier to comprehend compared to other shape. This is because, the operation of absorber is depending on the design and the material that being use. In theory, this type of absorber is expected to operate at frequencies ranging from 3GHz to 15GHz. Since there is equipment limitation, the frequency that being used for the measurement is only 10GHz. The result is compared and verified with those of commercially available absorber.