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ABSTRACT 

Filled pause and Elongation are the two types of speech disfluencies that need more suitable 

acoustical features to be classified correctly since they are always being misclassified. This 

work concentrates on developing an accurate and robust energy feature extraction for 

modelling filled pause and elongation by investigating different energy features using local 

maxima points of the speech energy. Method: In this paper, we extracted peak values from each 

frame of a voiced signal by implementing different thresholding techniques to classify filled 

pause and elongation. These energy features are evaluated by using statistical naïve Bayes 

classifier to see the contribution on the classification processes. Various samples of sustained 

syllables and filled pauses of spontaneous speech were extracted from Malaysian 

Parliamentary Debate Database of the year 2008. A naïve Bayes was used as a classifier. We 

performed F-measure evaluation to investigate the significant differences in mean of filled 

pause and elongation samples. Results: Results revealed that our proposed LM-E has increase 

the classification with up to 71% and 75% F-measure for elongation and filled pause. 

Conclusion:  The best achieved accuracies in both filled pause and elongation classification 

were varied depending on the types of thresholding techniques applied during the local maxima 

of speech energy extraction. The most contributed thresholding technique is our proposed 

technique which is by using the adaptive height as the threshold that extracts the local maxima 

of the speech energy (LM-E). 

Keywords: Filled pause and elongation, naïve Bayes, energy feature extraction, automatic 

speech recognition. 

1. Introduction 

Over the past decades, Automatic Speech Recognition (ASR) system offers invaluable 

contributions to various fields. The benefits of ASR can be clearly seen in read and planned 

speech as speech is the main tool in daily communication and has been used in many application 

(Zapata and Kirkedal, 2015). However, developing an ASR system becomes more challenging 

for natural speech due to the occurrences of disfluencies such as filled pause. Studies have 

reported filled pauses has degraded the ASR’s performance because it interrupts the fluency of 

speech, increases ASR complexity, and causes confusion to machine-based recognition devices 

(Singh et al., 2012). This problem becomes pertinent when a vowel sound of a normal word 

being spoken relatively long at any position in an utterance, both within a word as well as 

between words. This occurrence formerly known as elongation causes a normal word to be 

falsely detected as filled pause because both elongation and filled pause shared similar 

acoustical feature patterns (Kaushik et al. 2010). Several established related researches have 

been conducted in detecting the filled pause, where both filled pause and elongation were 

classified into the same disfluency class (Audhkasi et al., 2009). However, classifying filled 

pause and elongation into the same disfluency class can affect ASR’s performance as 
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eliminating normal words from recognition may modify the intended context of a speech and 

leads to inaccurate transcription. According to (Kaushik et al., 2010), filled pause and 

elongation causes transcription problem in ASR. Many ways were conducted to separate filled 

pause and elongation. The most common way is by extracting the acoustical features of the 

filled pause to be used in the classification. Various acoustical features were used to model 

filled pause such as energy, fundamental frequency, Mel-frequency cepstral coefficients and 

formant frequency. Among the well-established acoustical features, fundamental frequency is 

mostly used as can be found in (Gabrea et al., 2000, Goto et al., 1999, Audhkhasi et al., 2009 

and Kaushik et al., 2010). Fundamental frequency is associated with energy as confirmed by 

(Rosenberg & Hirschberg, 2006) in his work where energy is used to classify pitch into 

accented or non-accented word. However, when the conventional energy extraction is used, the 

accurate modelling of filled pause and elongation cannot be achieved as seen in (Li et al., 2010). 

Therefore, this paper addresses the exploitation of speech energy as a feature to accurately 

model the filled pause and elongation. Energy was widely used in filled pause research (Garg 

& Wards, 2006, Li et al.,2008 and Stouten et al., 2006). The use of energy can be found in 

different language of filled pause studies such as Mandarin, European Portuguese and English. 

Since filled pause and elongation is language specific (Yusof et al., 2008), the performance of 

energy was reported differently. It was proven in (Stouten et al., 2006) that energy is unable to 

differentiate filled pause and elongation of European Portuguese language due to the equal 

pattern of energy stability. In contrast with (Li et al., 2008), the energy along with MFCC and 

F0 have shown promising classification performance for Mandarin filled pause. It is observable 

from those researches that the combination of suitable feature with energy can increase the 

classification process compared to energy alone.   

 

Energy of the speech may be measured using several techniques such as log energy, sum of 

square energy and sum of absolute energy. Generally, all the above-mentioned techniques of 

calculating the sums of energy are measured on each short frame. These techniques are suitable 

and beneficial for speech involving normal words. However, sum of energy cannot sufficiently 

represent filled pause, especially when filled pause needs to be differentiated with elongation. 

According to (Stouten et al., 2006), the current means of representing energy is not able to 

separate filled pause and elongation in Portuguese language well due to their similar energy 

characteristics. The use of energy parameter is customary but not limited in endpoint detection 

only. It is also beneficial in consonant and vowel detection in (Izzad et al., 2013). However, 

sum of energy calculated from short time speech frame is unable to detect the energy variation 

from the consonant and vowel in the elongation. These researchers concluded that there are 

difficulties in differentiating filled pause and elongation into two separate classes. Therefore, 

further work is needed to investigate and select the suitable energy feature extraction technique 

for the abovementioned purpose. Rigorous energy feature selection research for representing 

filled pause and elongation remains hard to find. Therefore, this research aims to identify the 

most suitable energy characteristic of filled pause and elongation, and construct a classification 

model that is able to discriminate filled pause and elongation into their own separate classes. 

. 

2. Methodology 

The methods of this research are divided into several stages. The first stage is dataset 

development of filled pause and elongation. Filled pause dataset (i.e. FP_DATA) and 

elongation dataset (i.e. ELO_DATA) are then subjected to pre-processing stage which is a 

combination of established procedures in speech analysis. The output of the speech pre-

processing is passed to the energy feature extraction stage process to get the energy feature 

representation of the speech. The selected energy feature vectors are then fed into the 

classification stage to classify the speech disfluencies into filled pause or elongation. The last 

stage is to evaluate the classifier performance based on several measurements. In overall, this 

research uses Matlab, Wavesurfer and R statistical software for speech processing and analysis. 

Detail of each stage is further elaborated in the subsequent sections.  



Hamzah and Jamil, Malaysian Journal of Computing, 4 (1): 178–192, 2019 

 

180 

 

2.1 Dataset Development 

The raw data that is used in this research is taken from Malaysia Parliamentary Debate Database 

of the year 2008. The data collection process is started from the video file conversion to audio 

format by using video to audio converter freeware and named MPHD.wav. The video recording 

collection of MPHD comprises of 51 video files. Each video file contains a morning and an 

evening session that was conducted within eight to thirteen hours and is accompanied with text 

transcription. The analysis of video quality is done one by one to select the best perfect match 

between video and text transcription. Out of 51 video files, only 22 files are suitable for further 

processing. They are not corrupted, no missing sounds and matched perfectly with the 

transcriptions (text files). These 22 audio (.wav) files contains 1 074 072 words with 

approximately 214 814 sentences. Only seven audio (.wav) files are randomly chosen and 

exploited to extract the Malay filled pause and elongation. The quantitative information 

analysis of the randomly chosen files is tabulated in Table 1. 

 
Table 1. Quantitative information of selected MPHD files 

 

Files name Duration Speakers FP ELO 

DR28052008 9hrs 129 490 498 

DR29052008 10hrs 114 300 389 

DR07072008 13hrs 210 370 359 

DR28082008 8hrs 123 600 557 

DR10112008 8hrs 105 500 450 

DR03112008 13hrs 152 420 397 

DR11122008 8hrs 143 320 350 

Total 69hrs 976 3000 3000 

 

The examples of sentences that contain filled pause, normal words and elongation are presented 

in Figure 1 and Figure 2. In the figures, the filled pause is marked in dashed-oval while normal 

word is marked in dashed-rectangle and the elongation is marked in dashed-square. The silence 

is transcribed as sil in the transcription pane above the speech waveform. The description for 

each segmented sentence is given by following the rule of “S (number of sentence) F/M 

(gender) T (topic number) and the segmented isolated filled pause and elongation is based on 

the number of sentences followed by number of filled pauses. For example, the sentence in 

Figure 2 is labelled as S53M5T03 with the corresponding filled pause and elongation of the 

sentence is F53 and E53. Subsequently, in order to gather different sets of filled pause and 

elongation data collection, all sentences are manually segmented for further used in this 

research. A total of 3000 isolated filled pause is collected comprising 2400 ‘aaa’, 450 ‘eee’ and 

150 ‘emm’ are named as FP_DATA. Meanwhile, a total of 3000 elongations are name as 

ELO_DATA. The ELO_DATA is a segmented syllable that is elongated by the speaker. In 

order to get an accurate endpoints segment, voice activity detection (VAD) techniques will be 

applied in both datasets (FP_DATA and ELO_DATA) which consists of 6000 manually speech 

segments. Furthermore, the datasets have been verified by the linguist experts (Dr. Norizah 

Ardi, Pusat Pengajian Bahasa UiTM Shah Alam) to confirm that the collection only contains 

the filled pause and elongation of word segments. 
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Figure. 1.  A complete sentence with only filled pause (Malay sentence id 

S169M9T04: Pesakit aaa, buah pinggang) 

 

 

 

Figure. 2.   A complete sentence with filled pause, normal words and elongation (Malay 

sentence id S53M5T03: di(ELO) aaa(FP) negara jiran)  

 

2.2 Pre-processing 

Pre-processing is one of the main part in ASR process (Deng et al., 2018). All the speech data 

that are used in this research are pre-processed for the purpose of feature extraction. In the pre-

processing stage, several processes are undertaken inclusive of amplitude normalization, pre-

emphasis, framing and windowing and voice activity detection. The pre-processing of speech 

is a vital stage in any speech processing research. Pre-processing is a crucial task in this research 

that involved speech vector normalization, framing windowing and voice activity detection. 

Each of the pre-processing process is discussed in the following subsections. 

 

2.3.1 Amplitude Normalization 
 
The raw speech data is a collection of speech uttered by different speakers thus the amplitude 
and energy vary. The variety of speaker’s speech energy can cause error or unstable 
classification rate if the feature vector is directly extracted. Therefore, the purpose of amplitude 
normalization is to ensure that the level of the energy is standardized or similarly calibrated. In 
this research, the z-score normalization technique is adopted. The speech amplitude variability 
is normalized to have zero mean and one standard deviation. Speakers’ volume variations need 
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to be normalized before the next process is taken so that the volume will not become a 
performance degradation factor.  
 
The normalization steps are as follows: 
i.  The mean   of the speech vector is computed  
ii. The standard deviation of the speech vectors (x) is computed  
iii. The mean and standard deviation calculated in step (i) and step (ii) are used to calculate the 
normalized speech vector as in Eq. (1) 

  

)(

)(
)(

x

xx
xz




  

(1) 

 
where  
x = speech vector 
The normalization effect is evaluated by calculating the mean amplitudes of the speech samples 

(3000 FP and 3000 ELO). The mean amplitudes variance before and after the amplitude 

normalization are compared and shown in Table 2. From the result, it is clearly observed that 

the mean amplitude variance after the normalization is smaller compared to before speech 

vectors normalization. Smaller variance shows that the difference between normalized 

amplitude among the filled pauses and elongations is very minimal. As stated earlier, the 

amplitude normalization is important to ensure the energy of the speeches within the same 

range. 

 
Table 2. Mean amplitude variance due to normalization 

 
Before After 

FP ELO FP ELO 

3.8066e-06 3.7886e-06 2.1778e-3232 2.1587e-32 

 

The output of normalized speech signal, z(x) is used as input to proceed with the pre-emphasis 

stage. 

 

2.3.2 Pre-Emphasis 

 

Generally, digitized speech waveforms comprise additive noise and have high spectral dynamic 

range. For example, a low energy can be found in high frequency spectrum of a speech as well 

as high energy in low frequency spectrum. Because of that reason, a process called as pre-

emphasis is performed on the normalized speech to flatten the speech spectrum and to 

emphasize the high-frequency part of the speech signal that was repressed through the human 

sound production mechanism. For example, pronunciation of vowels existing in filled pause 

and elongations have high energy (Kitamaya et al., 2003) and may be pronounced at the lower 

frequency. Therefore, it needs to be boosted to attenuate the information from the higher 

frequency for better acoustical feature representation. The most extensively used pre-emphasis 

digital high-pass filter is defined as in Eq. (2). 

 
)1()()(  nAxzny  (2) 

 

where: 

 )(ny
  

= the value of output signal at discrete time step n 

)(xz
  

= the value of normalized input signal at discrete time step n 

A  = is a constant normally set between 0.9 to 1 

 

In this research, the value of 0.95 is chosen as A. In the literature, there are various usages of 

pre-emphasis constant. A constant of 0.95 for pre-emphasis process was used in Verkhodanova, 

& Shapranov, 2014). While in (Murakami & Mizuguchi, 2010), the pre-emphasis constant is 
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set to 0.97. However, according to (Abbas et al., 2013), the typical value of pre-emphasis 

constant is 0.95. A low frequency signal is the one with slow time variation. The slow variation 

effect on low frequency signal concurrently produces adjacent samples of similar numerical 

value. From equation (2)(2), the subtraction process removed the part of the samples that did 

not change in relation to its adjacent samples to retain the high-frequency components. The 

output signal of the pre-emphasis process )(nxprem
 
is then past to the framing stage.  

 

2.3.3 Framing   

 

Speech signal is non-stationary and non-periodic in a longer duration. Its statistical properties 

are non-constant over time. However, practically, at a frame of 20ms~30ms, speech is 

considered stationary and quasi-periodic (Ganaphaty, 2012). Thus, the non-stationary 

properties of a speech signal need to be transformed as stationary using framing. Framing a 

speech signal is a process of blocking the speech signal into frames of N samples, with adjacent 

frames being separated by M samples i.e., the frame is shifted with M samples from the adjacent 

frame. The spectral features estimated from frame to frame will be smooth if the shifting is 

small. The shifting process is important to ensure overlapping of the speech frame. The absence 

of overlapping between adjacent frames will cause the speech signal to be entirely mislaid and 

will contain noisy components only.  

 

The general equation for frame blocking is written in Eq. (3) by assuming that the speech frame 

length ( thl ) is represented as S and the entire speech signal is denoted as L. 

 

( ) ( )l lX N S M N   (3) 

 

where. 

lX  = frame of speech 

N  = 0,1,…,N-1 sample 

l  = 0,1,…L-1 frames 

 

In this research, the frame size is set to 20ms (320 points) frames, which were overlapped at 

10ms (160 points). A typical frame shift of 10ms of a short frame of 20ms is always chosen in 

speech processing research (Rosenberg & Hirschberg, 2006). The overlapping is important to 

ensure the smooth transition of estimated parameters between frames.  

 

2.3.4 Windowing 

Windowing is done to reduce the discontinuities of the speech signal at the edges of each frame 

by applying a tapered window to each frame. At each framed speech signal, a window is applied 

at the beginning and ending by using window function. For a window w(n), the windowed 

signal will be defined as in Eq. (4)(4).  

),().()( nwnxny  10  Nn  (4) 

 

where, 

w(n) =  Hamming window 

x(n) =  speech signal 

)(ny  = windowing result of the signal 

 

Hamming window is the mostly used windowing function applied on each speech’s frame of 

the speech and is described in Eq. (5)(5). It also provides better frequency resolution as it 

minimizes signal discontinuity.  
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𝑤(𝑛) = {0.54 − 0.46cos⁡(
2𝜋(𝑛 − 1)

𝑁 − 1
)

0

⁡⁡⁡⁡⁡⁡ , 0 ≤ 𝑛 ≤ 𝑁  

(5) 

 

2.4  Energy feature extraction 

 

In general, the process of getting the representation of each speech sample’s energy is by using 

the standard method (Jalil et al., 2013) that is by calculating the sum of the energy of each short 

speech frame as in equation (6). 

2]

1

)()([



n

Nnm

mnwnxnE    
    (6) 

 

The next step is to calculate the standard deviation of the whole speech segment to measure 

energy’s stability. Energy standard deviation of the filled pause is expected to be small (Stouten 

et al., 2006) as they are presumed to be more stable. Energy example of filled pause and 

elongation is taken to demonstrate its function in representing elongation and filled pause as 

shown in Figure 3 and Figure 4. Hypothetically, the elongation (A) should produce higher STE 

while filled pause (B) lower due to the stability assumption of filled pause. However, both filled 

pause and elongation produced the opposite value of STE 

 

 

 

STE Standard deviation of ELO:  

10ms: 56, 20ms: 105, 40ms: 182 

 
Figure. 3. Example of STE measurements on elongation 
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Figure. 4. Example of STE measurements on filled pause  

 

 

 
Figure. 5. STE value distribution for filled pause and elongation 

 

In filled pause research, energy is an important feature. Several acoustical features that were 

previously tested in filled pause classification such as fundamental frequency and spectral 

envelope are correlated with energy (Rosenberg & Hirschberg, 2006). Generally, the energy of 

filled pause is stable and constant, as proven in (Garg & Ward, 2006). However, due to the 

transition between consonant and vowel in the elongation, the standard method of energy 

measurement is not able to represent this transition named as expressive intonation. Therefore, 

another way of exploiting the energy of the speech is by using the local information of the 

speech energy need to be investigated. This is further explored and discussed in the next 

subsection.  

 

For each duration that are tested (i.e. 10ms, 20ms and 40ms), the standard deviation of the 

energy produced by elongation are denoted as 56, 105 and 182 which are lower compared to 

filled pause energy’s standard deviations (i.e. 70, 121, 241). The distribution of energy value 

of both filled pause and elongation is shown in Figure 5. From Figure 5, it is obviously seen 

that the energy representation (energy standard deviation) of filled pause and elongation is 

overlapping. It shows that the filled pause and elongation cannot be differentiated by using 

energy as the feature.  

 

2.5  Proposed Speech Energy Extraction using Local Maxima 

 

Previously, several techniques of local maxima extraction have been proposed. Basically, the 

techniques of local maxima extraction depend on the threshold parameter selection. One of the 

techniques of local maxima extraction is by utilizing the distance between peaks as threshold 

(Schwartzman et al., 2011). The technique is implemented by assigning a minimum peak as a 

threshold. A point is marked as local maxima if it is the highest peak number among the 

descending peak data. The other technique is by using minimum height (Bertot etal., 2014) as 

threshold. In this technique, the peak is detected by first order difference information. A peak 

occurs when the trend changes from upward to downward, i.e., a peak is where the difference 

changed from a streak of positives and zeros to negative. Both techniques were applied in this 

research. According to (Schwartzman et al., 2011), these techniques are only applicable when 

the noise is stationary and isotropic. However, it is well-known that speech is non-stationary 

and the values of amplitudes represented by the volumes or energy is extremely varied and thus 

not isotropic. Therefore, the aim of the proposed energy extraction manipulating the local 

maxima is to optimize the local maxima selection in each speech segment. 
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Speech energy is closely related to the amplitude of the speech (Izzad et al., 2013). Instead of 

calculating the total energy of each frame, in this research the energy stability of the speech is 

measured based on the amplitude transition from one frame to another. To measure the 

amplitude transition, this research proposed the manipulation of the local maxima points of the 

speech. We introduced adaptive local maxima threshold selection technique by directly 

comparing one peak points to another using adaptive threshold selection based on the height 

difference. The proposed energy extraction technique is Local Maxima of the Speech Energy 

(LM-E). The details steps of the proposed LM-E are as below: 

Step1: Find the minimum peak mp of all the peaks in the speech  

Step2: Set the mp as the first threshold. 

Step 3: Iterate the process to the next consecutive point in the speech np  

Step 4: Compare mp and np  

Step 5: If 0 nPmP and 0nP , then np is assigned as the first local maxima 1ELM  . 

 If 0 nPmP then repeat step 3. 

Step 6: Save the nELM  into a matrix for further process. 

In this proposed method, different adjustable positive scalar number is tested as threshold to 

observe the most suitable parameter. 

 

2.6  Classification 

 

The classification stage is preceded after the energy feature vectors have been collected from 

the energy feature extraction stage. In this research a simple naïve Bayes classifier is used to 

evaluate the performance of extracted featured in representing the filled pause and elongation. 

The overall steps can be visualized as in Figure 6.  

 

 

 

 

 

                                                                        
                                                                               Classification 

 

Figure. 6. Classification process 

The process of feature classification is described as follows: 

i. The classifier learns the conditional probability from the training data of the attributes 

X (acoustical feature values) given the class label, C (FP or ELO).  

ii. The classification is performed by applying Bayes rules to compute the probability of 

C given the particular feature of X.  

iii. The class of the feature X is predicted by the highest posterior probability. 

 

Let x be a specific feature with assigned values of x1, x2, x3 …xn and C is the class with assigned 

values of class variables of C1, C2, C3 …Cn. The Bayes classifier enables the computation of the 

posterior probability ( | )kP C c X x  for each possible class kc  using Bayes theorem (Dougherty 

et al., 1995). The class label of the disfluency is determined by using Bayes theorem as in 

equation (7) (7).  

 

)|(maxarg xiCpC    (7) 

where, 





I

i
iCpiCxp

iCpiCxp
xCip

1

)()|(

)()|(
)|(  

   (8) 
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( , ) ( | ) ( )i i ip x C p x C p C  (9) 

 

where, 

c = class of the disfluencies  

(c = FP for filled pause , c = ELO for elongation) 

x = acoustical feature 

p(c) = prior probability 

p(x|c) = conditional probability 

p(c|x) = posterior probability 

 

The prior probability of 0.5 for each class is set equally since the number of filled pause and 

elongation is distributed equivalently. To validate the classifier, a 10-folds cross validation is 

used. Cross validation (CV) is the most common and recently used (Elkan, 2012; Qin et. al, 

2012). There are several techniques applied in CV such as leave one-out and fold-CV. In 

(Stouten et al., 2006), a total of 186 iterations is applied into leave one-out cross-validation in 

which each time of the experiment, 1 sequence of data is taken out as a test data while the rest 

is used for training. This process is repeated up to 186 times. However, this method is quite 

time consuming for a larger dataset. A large dataset that consists of 1076 samples has been 

applied with 10-fold CV in order to test the classifier’s performance (Elkan, 2012). The study 

found that their classifier’s performance is comparable with the previous work done by 

(Bouckaert, 2004). In (Murakami & Mizuguchi, 2010), two stage of classifiers validation is 

done. The first stage is conducted by using standard training and testing data partition with 

different data division ratios while the second stage uses cross-validation. 

 

This research chooses cross validation method to test the accuracy of the model. In 10-CV 

technique, nine folds are used to train classifier, and the one-fold that is held out is then used to 

test the classifier. The process of dividing the data into 10-fold CV is as follows: 

Input: Training set S , integer constant 𝑘 

Procedure: 

Partition 𝑆  into 𝑘 equal-sized subset 𝑆1…𝑆𝑛 

For  1i  to ki   

Let iSST /  

Run learning algorithm (Bayes classifier) with T as training set 

Test the resulting classifier or iS .  

In the 10-fold CV the total data of filled pause and elongation are divided into 10 equivalent 

folds. This process is executed 10 times with different fold used as testing during each iteration. 

Then, the evaluation of the classification is done based on several measurement techniques such 

as accuracy, F-Measure, precision and recall. 

3.  Results and Discussion 

 

To verify the validity of the extracted energy features from the MPHD database in the 

classification processes of filled pauses and elongations, various experiments were performed. 

To ensure accuracy, various experiments were performed individually for each energy feature 

by using 10-folds cross-validation. The feature classification performances are measured using 

precision, recall, F-measure and accuracy. The precision and recall rate are needed to get the F-

measure. The recall rate shows that the number of relevant filled pause or elongation that is 

successfully classified among the relevant filled pause or elongation. Precision shows the 

number of relevant filled pause or elongation that is successfully classified among all of the 

filled pause or elongation. On the other hand, F-measure is the harmonic mean between 

precision and recall rate. The accuracy shows the overall performance which denotes the 

number of filled pause or elongation that is successfully classified among the entire filled pause 
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and elongation. All of the stated measurements between both STE and proposed LM-E are 

shown in Table 3. 

 

 

 

 

 
Table 3. Evaluation results of STE and LM-E for FP and ELO  

Acoustical 

Features 

F-

Measure 

% 

Precision 

(PR)% 

Recall 

(RE) % 

Accuracy 

(ACC)% 

FP ELO FP ELO ELO FP 

LM-E 71 75 68 80 78 78 74 

STE 63 70 65 68 65 63 67 

 

From the results, it can be seen that the LM-E outperform the well-established STE. In overall, 

the accuracy of the energy feature increased from 67% to 74% which are about 7% increment 

when the technique of adaptive thresholding is introduced. Among them, LM-E scored higher 

recall and precision rate at > 68% for both filed pause and elongation compared to STE. The 

highest F-measure for filled pause is achieved by LM-E at 71% followed by STE at 63%. LM-

E scored higher F-measure at 75% for elongations followed by STE at 70%. It shows that the 

proposed LM-E represents elongation better compared to STE.  

The results of accuracy for each fold in the 10-fold CV for both LM-E and STE are shown in 

Fig 8. For the proposed LM-E, the accuracy differences between fold is considerably small 

which is only 3.69. This indicates LM-E is consistent in representing each filled pause and 

elongations. The lowest accuracy of the proposed LM-E is denoted at 68% as seen in the 7th 

fold. Most of the speech data of the 7th fold is from DR20080528 and DR20080828 datasets. 

 

An example of misclassified ELO and FP are randomly taken from DR20080828 dataset. The 

LM-E standard deviation for both ELO (ELO07.wav and ELO06.wav) and FP (FP11.wav and 

FP107.wav) are 0.684, 0.378, 0.937 and 0.9828 respectively. It is obviously shown that the 

LM-E standard deviation for FP are lower compared to ELO which is supposedly to be small.  

 

 
 

Figure. 8. 10-fold CV for LM-E and STE accuracy 

 

In speech production, there is a transition between consonant to vowel causing the acoustic 

changes within the transition (Doellinger et al., 2011). According to (Doellinger et al., 2011) 

the transition between consonant to vowel is due to the interval between the release burst and 

the onset of laryngeal pulsing. The transition from consonant to vowel in Malay language 
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dataset produced a unique phenomenon named as expressive intonation in this research. The 

graphical representation of the consonant to vowel transition is shown in Figure 9. Since there 

is no significant transition between consonant to vowel in the elongations depicted in Figure 9, 

a lower standard deviation of LM-E is derived. Thus, the standard deviation does not meet the 

acoustical rules of LM-E for elongation; they are misclassified as filled pause. 

 

Some of the elongation starts with voiced consonant (i.e. /ga/, /da/, and /ni/) unvoiced consonant 

(i.e. /pi/, /tu/, and /ke/). There are also elongations uttered with semivowel (i.e. /ya/, /wa/). It is 

observable that there is no significant amplitude transition between consonant to vowel in many 

of the elongations of the 7th fold; thus, causing lower LM-E standard deviation. The elongation 

that is in the form of semivowel is hardly to be correctly classified by LM-E. Most of the 

elongations cannot be correctly classified by using LM-E as the energy of the semivowel and 

the vowel of the filled pause do not differ significantly. 

 

 

 
Figure. 9. Consonant to vowel transition in elongation /da/ 

 

According to (Espy, 1986), the similar acoustical pattern between semivowel and vowel 

causing the detection of semivowels is a challenging task. In summary, several causes of 

misclassification done by LM-E are: 

I. A low volume of voice pronunciation by the speaker caused inaccurate representation 

of LM-E for filled pause.  

II. Filled pause is uttered in an emotional state of mind such as angry, happy and doubt; 

producing expressive intonation in the filled pause utterances. Therefore, filled pause 

is misclassified as elongation as it possessed characteristic similar to elongation. 

III. Insignificant transition between consonant to vowel in elongation; causing a low 

LME’s standard deviation. 

 

As stated earlier, the LM-E is associated with the speech energy (STE). Therefore, this research 

compares the performance of these two speech energy characteristics in differentiating filled 

pause and elongation. Since the filled pause is unvaried pronunciation of phonemes, the energy 

is constant. The consistency of the energy is measured based on STE’s lower standard deviation 

(Stouten et la., 2006). In other words, the STE’s standard deviation for filled pause is lower 

compared to elongation. The LM-E which is an exploitation of the speech energy, however 

managed to differentiate the elongation better compared to STE. 
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4. Conclusion 

 

This research concludes that the exploitation of the well-established STE has produced better 

classification accuracy for FP and ELO. In the future, the research is expected to produce a 

more robust energy feature or any acoustical feature that ae more suitable especially in 

overcoming the problem of semivowel detection in elongation. The research also suggests a 

more efficient algorithm can be constructed so that it can reduce the computation time. 
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