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ABSTRACT 

In this paper, we consider a new class of close-to-starlike functions denoted 

by 
 ,CS , defined by the Carlson-Shaffer operator   ,L . Let S denote the class 

of analytic univalent functions f
 
defined by   
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is a starlike function. Properties   of 

the class 

 ,CS  such as the coefficient bounds, growth and distortion theorems 

and radius results are investigated.   

Keywords: close-to-starlike functions, analytic functions, starlike functions, 

Carlson-Shaffer operator, coefficient bound, growth and distortion theorems, 

radius results. 

1. Introduction 

Let A  denote the class of functions of the form  
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that are analytic and normalized in the open unit disk  1:  zzE   and S be the subclass of 

A consisting of functions that are univalent in E .  

Denote by P , the class of functions with positive real part, where functions in this 

class are of the form 
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Let 
S , K and C  denote the subclasses of S which are the known class of starlike, 

convex and close-to-convex functions respectively ( Goodman, 1983; Peter et. al., 2018; Rathi 
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et. al., 2018). Reade (1955) defined the class of close-to-starlike functions where functions in 

this class satisfy  
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with  z  belonging to 
S .

  
 

Reade (1955) obtained that )(zf  
is close-to-starlike if and only if the inequality,  
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holds for all 21    and for all 10  r . The class of close-to-starlike functions is denoted by 

CS . 

Srivastava and Attiya (2007) introduced a family of linear operator AAJ b :,  by 

the Hadamard product of the Hurwitz-Lerch Zeta function with analytic functions as 

    zfGzfJ bb  ,,   

where Cb  with Ez,μ,,,,,b      3210 C and AG b ,  is
 
given by  
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Srivastava et al. (2013), then introduced a subclass of close-to-starlike functions using 

Srivastava-Attiya operator denoted by 


bsCS ,  where they gave the following definition. 

Definition 1.1  A function f  
is said to belong to the class 



bsCS ,  
if and only if, there exists a 

function 
Sg  such that 
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In the special case when 0s , the class 


bsCS , can be reduced to the class 
CS , studied 

earlier by Reade (1955). 

 

This paper will define a new class of close-to-starlike functions using the operator 

defined by Carlson and Shaffer (1984), where the Carlson-Shaffer linear operator 

AA:),( L is given by  

)();,()(),( zfzzf  L  
where
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The function, );,( z  is known as the incomplete beta function.  The term k)(
 
is the 

Pochhammer symbol that can be expanded in Gamma functions as 
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Thus, Carlson-Shaffer linear operator can be written as, 
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We define our new class of functions as follows. 

Definition 1.2 A function f is said to belong to the class of 


 ,CS  if and only if there exists 

a function  Sg such that  
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In the special case, when 1  and 1 , the class 


 ,CS  reduces to the class 
CS , studied 

by Reade (1955). 

The main objective of this paper is to find the coefficient inequalities and basic properties of 

the class 


 ,CS . 

2. Coefficient bounds 

Theorem 2.1   Let f  in the form of (1.1) be in the class 
*

,CS .  Then, 
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Proof   Method of Srivastava et al. (2013) will be used to prove this theorem.  Suppose that 
*

,CSf  , then from (1.4), there exists a function 
*Sg  and a function Pp  such that,  

           
    Ezzgzpzf        ),()(,L                        (2.2) 
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Let 
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Then, by substituting (1.3) and (2.3) into (2.2), we have 
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Comparing coefficient of
nz on both sides of (2.4) gives 
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Also using the fact that 
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equation (2.5) becomes 
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So, we have that, 
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which will complete the proof of Theorem 2.1. 

In its specific cases when 1  and  1   , we obtain 

 

 1      ,2 \N nnan  
which is the result of Reade (1955). 

 

3. Growth and distortion theorem 

Using the coefficient bound we now derive the other properties for the class 
*

,CS . Firstly 

we find the growth theorem for functions in the class 
*

,CS . 

Theorem 3.1  Let
*

,CSf  . Then, 
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Proof  Let
*

,CSf  . By taking absolute values on both sides of (1.1), we have  
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Hence, by using triangular inequalities, we have, 
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By substituting (2.1) into (3.1), we have 
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Thus this completes the proof of Theorem 3.1. 

 

We next derive the distortion theorem for functions in the class 


 ,CS . 

Theorem 3.2  Let 
  ,CSf . Then, 
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Proof   Let 
  ,CSf . For distortion theorem, we differentiate (1.1) to obtain 
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By taking absolute values on both sides, we have 
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By substituting (2.1) into (3.2), we have 
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Thus this completes the proof for Theorem 3.2. 

4. Radius of convexity, starlikeness and close-to-convexity 

Results on radius of convexity, starlikeness and close-to-convexity  for the class 
*

,CS  will 

be obtained in this section.  

A function Sf   is said to be convex of order )10(   if  
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Theorem 4.1  Let the functions in the form of (1.1) be in the class of  
*

,CS  . Then, f  is 

convex of order   if,  
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In view of Theorem 2.1, we have  
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Solving (4.3) for z  we obtain 
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This completes the proof of Theorem 4.1. 

A function Sf   is said to be starlike of order )10(   if it satisfies 
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Theorem 4.2   Let the functions in the form of (1.1) be in the class of 
*

,CS  .  Then, f  is 

starlike of order   if,  
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But in view of Theorem 2.1, the inequality (4.5) holds if 
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Solving (4.6) for z  we obtain 
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This completes the proof of Theorem 4.2. 

A function Sf   is said to be close-to-convex of order )10(   if  

  .)(Re  zf                                                          (4.7) 

Theorem 4.3   Let the functions in the form of (1.1) be in the class of 
*

,CS  .  Then, f  is 

close-to-convex of order   if,  
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But in view of Theorem 2.1, the inequality (4.8) holds if 
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Solving (4.9) for z  we obtain 
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This completes the proof of Theorem 4.3. 

 

5. Conclusion 

 

In this paper, a certain class of analytic functions in the complex plane is discussed. The class 

of analytic univalent functions is denoted by S .This paper is specifically focused on a class 

of close-to-starlike functions defined using Carlson-Shaffer operator. This class is denoted by 

*
,CS .We find the coefficient bounds, growth and distortion theorems and radius properties 

for the class defined.  
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