EVALUATION OF SUBMERGE TOLERENCE FROM RICE GENOTYPE

NURUL TASHA BINTI ZULKIFLE

BACHELOR OF SCIENCE (Hons.) BIOLOGY FACULTY OF APPLIED SCIENCE UNIVERSITI TEKNOLOGI MARA

JULY 2019

This Final Year Project Report entitled "Evaluation of Submergence Tolerance From Rice Genotype" was submitted by Nurul Tasha binti Zulkifle, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Sciences, and was approved by

Dr. Nor' Aishah binti Hasan Supervisor B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Siti Norakura bindi Jamal Project coordinator FSG611 B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah, Negeri Sembilan

Dr. Aslizah binti Mohd Aris Head School of Biology Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date : _____

TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENTS	111
TABLE OF CONTENTS	iv
LIST OF TABLES	VI
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	х

CHAPTER 1: INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Significance of the Study	4
1.4	Objectives of the Study	4

CHAPTER 2: LITERATURE REVIEW

2.1	Rice	5
	2.1.1 Taxonomy of rice	6
2.2	Abiotic Stress	7
	2.2.1 Submergence	8
	2.2.2 Salinity	8
	2.2.3 Common traits needed in submergence tolerant lines	10
	(IRRI)	
2.3	Strategy to evaluate submergence rice	11
	2.3.1 Test Tube Method	11
	2.3.2 Water Lodged Soil Method	12
	2.3.3 Seedling Recovery Method	12
	2.3.4 Seedling Emergence Method	13

CHAPTER 3: METHODOLOGY

3.1	Materials	14
	3.1.1 Raw materials	14
	3.1.2 Chemicals	14
	3.1.3 Apparatus	14

3.2	Methods	16
	3.2.1 Seed Germination Method	16
	3.2.2 Test Tube Method	16
	3.2.3 Water Lodged Soil Method	17
	3.2.4 Seedling Recovery Method	17
3.3	Growth Analysis Parameter	17
	3.3.1 Calculate Shoot Elongation per day (cm)	16
	3.3.2 Seedling Survival Percentage	18
	3.3.3 Survival Score (SES 1-9)	19
	3.3.4 Statistical Analysis	20

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Germination Rate	21
4.2	Shoot Length and Elongation per day (cm)	24
4.3	Seedling Recovery Method	30
4.4	Survival Percentage 100%	31
4.5	Comparison between test tube and water lodged soil method	32

34
36
41
43

ABSTRACT

EVALUATION OF SUBMERGENCE TOLERANCE FROM RICE

GENOTYPE

Rice (Oryza sativa L) is one of the most popular food and feed over half population of the world. However, nowadays drastic changes in environment such as flooding have seriously threatened traditional rice cultivation practices in several parts of the world including Malaysia. Therefore, the present study aims to develop a simple screening technique to evaluate the tolerance and susceptible levels of various rice genotypes against submerged stress. A total of fourteen genotypes of rice including two check varieties (FR13A and Bina 10) were analysed in an experiment to determine their tolerance and susceptible levels against submergence stress. Two different methods namely test-tube method and water lodged soil method were used along with positive and negative control varieties which is Towuti and Bina 10 respectively. The experiment was designed in a complete randomized design with three replications. Germination results demonstrated that only six genotypes (NMR151, NMR152, MR219, Towuti, FR13A and Bina 10) showed 50% survival of germination rate. NMR152 rice genotypes performed the highest shoot length and elongation per day with 5.25±0.20cm and 1.05±0.15cm respectively in test tube method. Seedling recovery score recorded that Towuti performed the best performance of growth with score of 1 whereas MR219 exhibited the lowest performance of growth recorded score of 5. Result indicated that Towuti, NMR152 and NM151 rice genotypes exhibited moderately tolerance against submergence stress. Test tube method exhibited the most efficient method with all rice genotypes tested showed a significantly highest shoot length compared to water lodge method. Test tube method indicated as a simple, rapid and cheaper technique to evaluate the abiotic stress tolerance in rice genotypes. Finding in this study serve as a fundamental information for future breeders to use these three varieties as positive control against submergence stress.