

INVESTIGATION OF TURNING CONDITION BASED ON MINIMUM ENERGY CONSUMPTION

MUHAIMIN MUSTAQIM BIN JAMALUDIN (2013452194)

A thesis submitted in partial fulfilment of the requirements for the award of Bachelor Engineering Mechanical (Manufacturing) (Hons)

> Faculty of Mechanical Engineering Universiti Teknologi Mara (UiTM)

> > JULY 2016

TABLE OF CONTENTS

CONTENT	PAGE
PAGE TITLE	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
TABLE OF CONTENT	iv
LIST OF FIGURES	vii
LIST OF TABLE	ix
LIST OF ABBREVIATIONS	xi
CHAPTER 1: INTRODUCTION	
1.1 Background	1
1.2 Problem statement	3
1.3 Objective	4

1.3 Objective	4
1.4 Scope	4

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction to Lathe	
2.1.1 Lathe components	6
2.1.2 Lathe operation	8
2.1.3 Type of lathe	9
2.2 Turning parameters	11
2.2.1 Speed	11
2.2.2 Feed rate	11
2.2.3 Depth of cut	11
2.3 Surface Roughness	12
2.4 Energy Consumption	13
2.5 Sustainable machining for turning	14
2.6 Optimizing Method	15
2.6.1 Taguchi	15
2.6.2 Response Surface Methodology (RSM)	17

CHAPTER 3: METHODOLOGY

3.1 Introduction	18
3.2 Flow Chart	19
3.3 Experimental Parameters	21
3.4 Design of Experiment	23
3.5 Material Selection	24
3.5.1 Work Material	24
3.5.2 Cutting Tool	26
3.6 Experimental Equipment	28
3.6.1 Lathe Machine	28
3.6.2 Clamp multi meter	30

	3.6.3 Surface roughness test machine	31
3	.7 Experimental work and procedures	32
	3.7.1 Experiment procedure	32
	3.7.2 Preparation of the work piece	33
	3.7.3 Setup for using Lathe machine	34
	3.7.4 Setup for using clamp multi meter	34
	3.7.5 Setup for using surface roughness test machine	35

CHAPTER 4: RESULT AND DISCUSSION

4.1 Introduction	36
4.2 Result	37
4.3 Analysis of Energy consumption	38
4.3.1 Model Analysis	38
4.3.2 Diagnostic plots	39
4.3.3 Discussion	40
4.4 Analysis of surface roughness	45
4.4.1 Model	45
4.4.2 Diagnostic plots	46
4.4.3 Discussion	47
4.5 Proses optimization	53

CHAPTER 5: CONCLUSION AND RECOMMENDATION

REFERENCES	59
5.2 Recommendation	58
5.1 Conclusion	56

ABSTRACT

Sustainable machining is the prime requirement of green manufacturing technology. This present research present an experimental study to investigate the influences of cutting parameters like spindle speed, feed rate, and depth of cut towards surface energy consumption and surface quality on Mild steel (AISI 1018) using lathe machine. The cutting tool used is Tungsten carbide insert tool bit Korloy TNMG160408-HM NC3020. Response surface methodology (RSM) is used for designing the experiment and has been applied to optimize cutting parameters. The result revealed that the energy consumption was affected by cutting speed. The energy consumption will increase by increasing the cutting speed. The feed rate and depth of cut does not reflect the influential parameter for energy consumption. Besides that, the most influential factor on the surface quality are spindle speed, depth of cut, and feed rate respectively.