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ABSTRACT 
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   which are analytic and univalent in the 

open unit disc  : 1U z z   , normalized by  0 0f   and  0 1f   . By   , C , 

we denote a new subclass of close-to-convex function such that 
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. In this paper, we give the 

representation theorem and obtain the coefficient bounds for functions  in  , C .   
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1. Introduction 

 

Let A denote the class of functions f of the form                  
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                                                         (1)  

analytic in the open unit disc U and normalized by  0 0f   and  0 1f   . Also, we denote 

S to be the class of functions in A containing univalent function of the form (1). According to 

Duren (1983), the function  f z S  is called a convex function and starlike function if  it  

satisfies 
"( )

Re 1 0
'( )

zf z

f z

 
  

 
 and 

'( )
Re 0

( )

zf z

f z

 
 

 
 respectively. Alexander in 1915 

defined f S  to be close-to-convex if it satisfy 
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 with ( ) *h z S (Goodman, 

1983). Later, Kaplan (1952) stated that f S  is said to be close-to-convex if and only if 
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 for z U  and g K . Silverman and Silvia (1996) studied the class C  of 

close-to-convex   functions where functions in this class satisfy 
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  , z U ,  g z z . Then, with the same  g z , Mohamad (1998) defined ( , )G   as 

the generalized class of close-to-convex  functions satisfying   Re ie f z   , 

,  z U     and cos  . Soh and Mohamad (2012) and Akbarally et al. (2011) also 

studied the class of close-to-convex  functions but with 
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respectively. Later, Yahya et al. (2012) studied the class ( , )StG    such that 
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.  

In this paper, we investigate a similar class of function with *g S . We define 

 , C  as the class of functions that satisfy 
 

 
Re i

zf z
e

g z

 
  

 
  

, 
2


  , cos  , 

0 1   and  
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, where  g z  is the well-known Koebe function.   

 

2. Representation Theorem 

Let P be the class of functions analytic in U and having the form  

                                                            
1
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  .                                                      (2) 

Since ( )p z  in P satisfies Re ( ) 0p z  , for z U , we say that ( )p z is the Caratheodory 

function. We relate the functions in  , C  to functions in P as given in the following 

theorem. 

Theorem 2.1  

Let f S  be given by (1). Then for z U , f   , C  if and only if  

   '( ) ( ) sinie zf z g z i A p z
     

where cosA    . 

Proof. 

Let f  , C , then 
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  . Multiplying both sides of the equation with ie   

gives 
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. Replacing cosA     gives  

                                               '( ) ( ) sinie zf z g z i A p z
                                          (3) 

as required. Conversely, from (3) taking  
1

1 n
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p z p z




   we can work backward to see that 

the conditions for functions to be in the class  , C  is satisfied. 

Next, we obtain the representation function for f  , C  as given in the 

following theorem by using the Herglotz Representation Theorem for functions in P. 

Theorem 2.2 

Let f  , C . Then for some probability measure on the unit circle X , f can be 

represented as 
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for  1x  . Conversely, if f is given by the above equation, then f  , C . 

Proof. 

According to Herglotz formula, for some probability measure  on the unit circle X ,  
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 in (3) and with the aid of Herglotz formula, yields 
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and upon simplification, we get           
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Integrating (4) with respect to z, gives 
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which is the desired representation function. By this result, we note that the extreme points of  

 , C  
are the unit point masses 

 
 

2

1 1 1
( ) 2 1 1

1 1

i i i

xf z e e e A
xz xxz

  
  

   
              

 

with 1x   and the derivatives of the extreme points of  , C  are the point masses 
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, 1x  . 

3. Coefficient Bound 

Using the representation formula established in Theorem 2.2, we now obtain the coefficient 

bound of functions in  , C . 

Theorem 3.1 

Suppose that f S  is given by (1), then the sharp inequality 1 ( 1)na A n    holds for 

2,3,4,...n  . Equality is attained for each n when f is an extreme point of  , C . 

Proof. 

From (5) we write  
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then we have 
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and upon factorization we obtain  
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Now, comparing (6) and (1) gives 
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and for 2n  , we have 1 ( 1)na A n    as required. This completes the proof of Theorem 

3.1 where the equality holds when  f  is an extreme point of   , C . 
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