COEFFICIENT BOUNDS FOR A CERTAIN SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS ASSOCIATED WITH THE KOEBE FUNCTION

Sidik Rathi, Shaharuddin Cik Soh and Ajab Akbarally

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

sidik@tmsk.uitm.edu.my, shahar@tmsk.uitm.edu.my, ajab@tmsk.uitm.edu.my

ABSTRACT

We consider here the functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ which are analytic and univalent in the open unit disc $U = \{z \in \Box : |z| < 1\}$, normalized by f(0) = 0 and f'(0) = 1. By $C(\lambda, \delta)$, we denote a new subclass of close-to-convex function such that $\operatorname{Re}\left\{e^{i\lambda}\frac{zf'(z)}{g(z)}\right\} > \delta$ for

which $\cos \lambda > \delta$, $0 \le \delta < 1$, $|\lambda| < \frac{\pi}{2}$ and $g(z) = \frac{z}{(1-z)^2}$. In this paper, we give the

representation theorem and obtain the coefficient bounds for functions in $C(\lambda, \delta)$.

Keywords: Close-to-convex functions, coefficient bounds, Koebe function, representation theorem, univalent functions.

1. Introduction

Let A denote the class of functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

analytic in the open unit disc U and normalized by f(0)=0 and f'(0)=1. Also, we denote S to be the class of functions in A containing univalent function of the form (1). According to Duren (1983), the function $f(z) \in S$ is called a convex function and starlike function if it satisfies $\operatorname{Re}\left\{1+\frac{zf''(z)}{f'(z)}\right\} > 0$ and $\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0$ respectively. Alexander in 1915 defined $f \in S$ to be close-to-convex if it satisfy $\operatorname{Re}\left\{\frac{zf'(z)}{h(z)}\right\} > 0$ with $h(z) \in S^*$ (Goodman, 1983). Later, Kaplan (1952) stated that $f \in S$ is said to be close-to-convex if and only if $\operatorname{Re}\left\{\frac{f'(z)}{g'(z)}\right\} > 0$ for $z \in U$ and $g \in K$. Silverman and Silvia (1996) studied the class C_{α} of α along to convex functions, where functions in this class patients. $\operatorname{Re}\left\{\frac{f'(z)}{g'(z)}\right\} > 0$

 α - close-to-convex functions where functions in this class satisfy $\operatorname{Re}\left\{e^{i\alpha}\frac{f'(z)}{g'(z)}\right\} > 0$,

 $|\lambda| < \frac{\pi}{2}$, $z \in U$, g(z) = z. Then, with the same g(z), Mohamad (1998) defined $G(\alpha, \delta)$ as the generalized class of α -close-to-convex functions satisfying $\operatorname{Re}\left\{e^{i\alpha}f'(z)\right\} > \delta$, $z \in U$, $|\alpha| \le \pi$ and $\cos \alpha > \delta$. Soh and Mohamad (2012) and Akbarally et al. (2011) also studied the class of α - close-to-convex functions but with $g'(z) = \frac{1+z}{1-z}$ and $g'(z) = \frac{1}{1-z}$ respectively. Later, Yahya et al. (2012) studied the class $G_{st}(\alpha, \delta)$ such that $\operatorname{Re}\left\{e^{i\alpha}\frac{zf'(z)}{g(z)}\right\} > \delta, \ \left|\alpha\right| < \pi, \ \cos\alpha > \delta \ \text{and} \ g(z) = \frac{z}{1-z^2}.$

In this paper, we investigate a similar class of function with $g \in S^*$. We define $C(\lambda,\delta)$ as the class of functions that satisfy $\operatorname{Re}\left\{e^{i\lambda}\frac{zf'(z)}{g(z)}\right\} > \delta, \ |\lambda| < \frac{\pi}{2}, \ \cos\lambda > \delta,$

 $0 \le \delta < 1$ and $g(z) = \frac{z}{(1-z)^2}$, where g(z) is the well-known Koebe function.

2. **Representation Theorem**

Let P be the class of functions analytic in U and having the form

$$p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n \quad .$$
 (2)

Since p(z) in P satisfies $\operatorname{Re} p(z) > 0$, for $z \in U$, we say that p(z) is the Caratheodory function. We relate the functions in $C(\lambda, \delta)$ to functions in P as given in the following theorem.

Theorem 2.1

Let $f \in S$ be given by (1). Then for $z \in U$, $f \in C(\lambda, \delta)$ if and only if

$$e^{i\lambda} [zf'(z)/g(z)] - i\sin\lambda - \delta = A_{\lambda\delta}p(z)$$

where $A_{\lambda\delta} = \cos \lambda - \delta$.

Proof.

Let $f \in C(\lambda, \delta)$, then $\frac{zf'(z)}{g(z)} = 1 + \sum_{n=1}^{\infty} b_n z^n$. Multiplying both sides of the equation with $e^{i\lambda}$

gives

$$e^{i\lambda} \frac{zf'(z)}{g(z)} = e^{i\lambda} + e^{i\lambda} \sum_{n=1}^{\infty} b_n z^n,$$
$$= \cos \lambda + i \sin \lambda + e^{i\lambda} \sum_{n=1}^{\infty} b_n z^n$$

Then

$$e^{i\lambda} \frac{zf'(z)}{g(z)} - i\sin\lambda - \delta = \cos\lambda - \delta + e^{i\lambda} \sum_{n=1}^{\infty} b_n z^n$$

and

$$\frac{e^{i\lambda} \frac{zf'(z)}{g(z)} - i\sin\lambda - \delta}{\cos\lambda - \delta} = 1 + \sum_{n=1}^{\infty} p_n z^n$$

with $p_n = \frac{e^{i\lambda}}{\cos \lambda - \delta} b_n$. Replacing $A_{\lambda\delta} = \cos \lambda - \delta$ gives

$$e^{i\lambda} \left[zf'(z) / g(z) \right] - i\sin\lambda - \delta = A_{\lambda\delta} p(z)$$
(3)

as required. Conversely, from (3) taking $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$ we can work backward to see that the conditions for functions to be in the class $C(\lambda, \delta)$ is satisfied.

Next, we obtain the representation function for $f \in C(\lambda, \delta)$ as given in the following theorem by using the Herglotz Representation Theorem for functions in *P*.

Theorem 2.2

Let $f \in C(\lambda, \delta)$. Then for some probability measure μ on the unit circle X, f can be represented as

$$f(z) = \int_{X} \left[-e^{-i\lambda} \left(e^{-i\lambda} - 2\delta \right) \left(\frac{1}{\left(1 - xz \right)} - 1 \right) + A_{\lambda\delta} e^{-i\lambda} \left(\frac{1}{\left(1 - xz \right)^2} - 1 \right) \right] \frac{1}{x} d\mu(x)$$

for |x|=1. Conversely, if f is given by the above equation, then $f \in C(\lambda, \delta)$.

Proof.

According to Herglotz formula, for some probability measure μ on the unit circle X,

$$p \in P \Leftrightarrow p(z) = \int_{x} \frac{1+xz}{1-xz} d\mu(x)$$

Replacing $g(z) = \frac{z}{(1-z)^2}$ in (3) and with the aid of Herglotz formula, yields

$$f'(z) = \frac{e^{-i\lambda}}{\left(1-z\right)^2} \left(A_{\lambda\delta} \int_{X} \frac{1+xz}{1-xz} d\mu(x) + i\sin\lambda + \delta \right)$$

and upon simplification, we get

Rathi et. al., Malaysian Journal of Computing, 3 (2): 172-177, 2018

$$f'(z) = \int_{X} \frac{1}{(1-z)^2} \left(-e^{-i\lambda} (e^{-i\lambda} - 2\delta) + \frac{2e^{-i\lambda} A_{\lambda\delta}}{1-xz} \right) d\mu(x).$$
(4)

Integrating (4) with respect to z, gives

$$f(z) = \int_{0}^{z} \left[\int_{X} \frac{1}{(1 - x\phi)^{2}} \left(-e^{-i\lambda} (e^{-i\lambda} - 2\delta) + \frac{2e^{-i\lambda}A_{\lambda\delta}}{1 - x\phi} \right) d\mu(x) \right] d\phi,$$

$$= \int_{X} \left[-e^{-i\lambda} \left(e^{-i\lambda} - 2\delta \right) \left(\frac{1}{(1 - xz)} - 1 \right) + e^{-i\lambda}A_{\lambda\delta} \left(\frac{1}{(1 - xz)^{2}} - 1 \right) \right] \frac{1}{x} d\mu(x),$$
(5)

which is the desired representation function. By this result, we note that the extreme points of $C(\lambda, \delta)$ are the unit point masses

$$f_x(z) = \left[-e^{-i\lambda} \left(e^{-i\lambda} - 2\delta \right) \left(\frac{1}{1 - xz} - 1 \right) + e^{-i\lambda} A_{\lambda\delta} \left(\frac{1}{\left(1 - xz \right)^2} - 1 \right) \right] \frac{1}{x}$$

with |x|=1 and the derivatives of the extreme points of $C(\lambda, \delta)$ are the point masses

$$f'_{x}(z) = \left[\frac{1 + (e^{-2i\lambda} - 2\delta e^{-i\lambda})xz}{1 - xz}\right] \left(\frac{1}{(1 - xz)^{2}}\right), \ |x| = 1.$$

3. Coefficient Bound

Using the representation formula established in Theorem 2.2, we now obtain the coefficient bound of functions in $C(\lambda, \delta)$.

Theorem 3.1

Suppose that $f \in S$ is given by (1), then the sharp inequality $|a_n| \leq 1 + A_{\lambda\delta}(n-1)$ holds for $n = 2, 3, 4, \dots$. Equality is attained for each n when f is an extreme point of $C(\lambda, \delta)$.

Proof.

From (5) we write

$$f(z) = \int_{0}^{z} \left[\int_{X} \left(\frac{-e^{-i\lambda} \left(e^{-i\lambda} - 2\delta \right)}{\left(1 - x\phi \right)^{2}} + \frac{2e^{-i\lambda} A_{\lambda\delta}}{\left(1 - x\phi \right)^{3}} \right) d\mu(x) \right] d\phi$$

and since

$$\frac{1}{(1-x\phi)^2} = \sum_{0}^{\infty} (n+1)(x\phi)^n \text{ and } \frac{1}{(1-x\phi)^3} = \sum_{0}^{\infty} \frac{1}{2}(n+1)(n+2)(x\phi)^n,$$

then we have

Rathi et. al., Malaysian Journal of Computing, 3 (2): 172-177, 2018

$$\begin{split} f(z) &= \int_{0}^{z} \left[\int_{X} \left(-e^{-i\lambda} (e^{-i\lambda} - 2\delta) \sum_{0}^{\infty} (n+1) (x\phi)^{n} + 2A_{\lambda\delta} e^{-i\lambda} \sum_{0}^{\infty} \frac{1}{2} (n+1) (n+2) (x\phi)^{n} \right) d\mu(x) \right] d\phi, \\ &= \int_{0}^{z} \int_{X} \left[1 + \left(-e^{-i\lambda} (e^{-i\lambda} - 2\delta) \sum_{1}^{\infty} (n+1) x^{n} \right) \phi^{n} + \left(A_{\lambda\delta} e^{-i\lambda} \sum_{1}^{\infty} (n+1) (n+2) x^{n} \right) \phi^{n} \right] d\mu(x) d\phi, \\ &= \int_{0}^{z} \left[1 + \left(-e^{-i\lambda} (e^{-i\lambda} - 2\delta) \right) \left(\int_{X} \sum_{1}^{\infty} (n+1) x^{n} d\mu(x) \right) \phi^{n} \right] d\phi \\ &+ \int_{0}^{z} A_{\lambda\delta} e^{-i\lambda} \left(\int_{X} \sum_{1}^{\infty} (n+1) (n+2) x^{n} d\mu(x) \right) \phi^{n} d\phi. \end{split}$$

Integrating f(z) with respect to ϕ gives

$$f(z) = z + \left[\left(-e^{-i\lambda} (e^{-i\lambda} - 2\delta) \right) \int_{X} \sum_{n=1}^{\infty} (n+1) x^n d\mu(x) \frac{z^{n+1}}{n+1} \right] + \left[A_{\lambda\delta} e^{-i\lambda} \int_{X} \sum_{n=1}^{\infty} (n+1)(n+2) x^n d\mu(x) \frac{z^{n+1}}{n+1} \right]$$
$$= z + \left[\left(-e^{-i\lambda} (e^{-i\lambda} - 2\delta) \right) \int_{X} \sum_{n=2}^{\infty} nx^{n-1} d\mu(x) \frac{z^n}{n} \right] + \left[A_{\lambda\delta} e^{-i\lambda} \int_{X} \sum_{n=2}^{\infty} n(n+1) x^{n-1} d\mu(x) \frac{z^n}{n} \right]$$

and upon factorization we obtain

$$f(z) = z + \left[\left(-e^{-i\lambda} \left(e^{-i\lambda} - 2\delta \right) + A_{\lambda\delta} e^{-i\lambda} \left(n + 1 \right) \right) \int_{X} \sum_{n=2}^{\infty} n x^{n-1} d\mu(x) \right] \frac{z^n}{n} \,. \tag{6}$$

Now, comparing (6) and (1) gives

$$a_{n} = \left[-e^{-i\lambda} \left(e^{-i\lambda} - 2\delta \right) + A_{\lambda\delta} e^{-i\lambda} (n+1) \right] \int_{X} x^{n-1} d\mu(x),$$

$$= \left[1 - 2Ae^{-i\lambda} + A_{\lambda\delta} e^{-i\lambda} (n+1) \right] \int_{X} x^{n-1} d\mu(x),$$

$$= \left[1 + A_{\lambda\delta} e^{-i\lambda} (n-1) \right] \int_{X} x^{n-1} d\mu(x).$$

Then,

$$|a_{n}| = \left| 1 + A_{\lambda\delta} e^{-i\lambda} (n-1) \int_{X} x^{n-1} d\mu(x) \right| \le 1 + \left| A_{\lambda\delta} e^{-i\lambda} (n-1) \right| \int_{X} |x^{n-1}| d\mu(x) = 1 + A_{\lambda\delta} (n-1)$$

and for $n \ge 2$, we have $|a_n| \le 1 + A_{\lambda\delta}(n-1)$ as required. This completes the proof of Theorem 3.1 where the equality holds when f is an extreme point of $C(\lambda, \delta)$.

References

- Akbarally, A., Mohamad, D., Soh, S. C. & Kaharudin, N. (2011). On the properties of a new class of α -close-to-convex functions. *Int. Journal of Math. Analysis*, vol 5, no. 8, 387-396.
- Duren, P.L. (1983). Univalent Function. Springer Verlag New York Inc.
- Goodman, A. W. (1983). *Univalent Function*. Mariner Publishing Co. Inc. Tampa, University of south Florida.
- Kaplan, W. (1952). Close-to-convex schlicht function. *Michigan Mathematical Journal*, 1. 169-185.
- Mohamad, D. (1998). Function whose derivative maps the unit disc into a half plane. PhD Thesis. University of Wales Swansea, UK.
- Silverman, H., & Silvia, E. M. (1996). On α-close-to-convex Functions. *Publicationes Mathematicae Debrecen*, 49, 532-537.
- Soh, S. C., & Mohamad. D. (2008). Coefficient bounds for certain classes of close-to-convex functions. *International Journal of Mathematical Analysis, Vol. 2, No. 27*, 1343-1351.
- Yahya, A., Soh, S. C. & Mohamad, D. (2012). Some extremal properties of a generalised Sakaguchi class of cnalytic functions. *Proceedings of the 20th National Symposium on Mathematical Sciences*.