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ABSTRACT

We consider here the functions f(z)=z+ a z" which are analytic and univalent in the
n=2

open unit disc U ={ze0 :|z|<1}, normalized by f(0)=0 and f'(0)=1.By C(4,5),

. f'(z
we denote a new subclass of close-to-convex function such that Re{e"1 L}>5 for

9(2)

In this paper, we give the

5

which cosA>8, 0<5<1, |/1|<Z and g(z)=
2 (1-2)

representation theorem and obtain the coefficient bounds for functions in C (/1,5).

Keywords: Close-to-convex functions, coefficient bounds, Koebe function, representation
theorem, univalent functions.

1. Introduction

Let A denote the class of functions f of the form
f(z)=z+>a," 1)
n=2

analytic in the open unit disc U and normalized by f(0)=0 and f’(0)=1. Also, we denote
S to be the class of functions in A containing univalent function of the form (1). According to
Duren (1983), the function f(z)eS is called a convex function and starlike function if it

satisfies Re{1+ zf'(z)}>0 and Re{Zf—(z)}>O respectively. Alexander in 1915

f'(2) f(2)
defined f €S to be close-to-convex if it satisfy Re{%}>0 with h(z) € S*(Goodman,
z
1983). Later, Kaplan (1952) stated that f €S is said to be close-to-convex if and only if

Re{%}>0 for zeU and geK. Silverman and Silvia (1996) studied the class C, of
g'(z

. . . . . o f'(z
a —close-to-convex functions where functions in this class satisfy Re{e'“ ( )}>O,

9'(2)
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|/1|<%, zeU, g(z)=z. Then, with the same g(z), Mohamad (1998) defined G(«,5)as
the generalized class of « —close-to-convex functions satisfying Re{e‘“f’(z)} >0,

zeU, |o|]<7z and cosa>&. Soh and Mohamad (2012) and Akbarally et al. (2011) also

studied the class of « —close-to-convex functions but with g'(z):iJr—Z and g'(z)=1L
-z

respectively. Later, Yahya et al. (2012) studied the class Gg(a,0) such that

Re{eia i (Z)}>5, la| <7, cosa>s and g(z)= : 2
9(2) .

In this paper, we investigate a similar class of function with geS*. We define

9(2)

0<s<land g(z) =;2 , where g(z) is the well-known Koebe function.

(1-2)

oz’
C(4,6) as the class of functions that satisfy Re{e” Z—(Z)}>5, |/1|<%, COSA>J,

2. Representation Theorem

Let P be the class of functions analytic in U and having the form
p() =1+ p,2" . )
n=1

Since p(z) in P satisfiesRe p(z) >0, for zeU, we say that p(z)is the Caratheodory
function. We relate the functions in C(/1,5) to functions in P as given in the following
theorem.

Theorem 2.1

Let f €S be given by (1). Thenfor zeU, f e C(4,6) if and only if

e*[zf '(2)/9(z)]-isinA-5=A,;p(z)
where A,; =CcosA—-4.

Proof.

zf'(z e :
Let feC(4,6), then ( ):1+ > b,z". Multiplying both sides of the equation with e'*

gives
ol 2t '(2) O +e”anz”,
g(Z) n=1
=cosA+isini+e”* > b z".
n=1
Then
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e”&—isinl—5=Cosl—5+eManzn
9(2) "~

and

e”L(Z)—isinl—é

9(2) S
=1+ z
cosA—o ;pn

il
with p, :coseft——éb”' Replacing A,; =cosA -4 gives

e*[zf '(2)/9(z)]-isinA-5=A,;p(z) (3)

as required. Conversely, from (3) taking p(z)=1+»_ p,z" we can work backward to see that
n=1

the conditions for functions to be in the class C (/1,5) is satisfied.

Next, we obtain the representation function for feC(ﬂ,&) as given in the
following theorem by using the Herglotz Representation Theorem for functions in P.

Theorem 2.2

Let f € C(4,6). Then for some probability measure 4 on the unit circle X, f canbe
represented as

e[|l s

for |x/=1. Conversely, if f is given by the above equation, then f e C(4,5).

Proof.

According to Herglotz formula, for some probability measure g on the unit circle X,

1+ xz
1-xz

peP@p(z):j du(x).

Replacing g(z) =ﬁ in (3) and with the aid of Herglotz formula, yields

e 1+xz -
f'(z2)=——=| Ay | ——d A+0
(z) (1_2)2( *‘le—xz u(x)+isin A+ J

and upon simplification, we get
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—|/I —M 2e MA}“S
j i Z)( " -20)+ 5 jdy(x). (@)

Integrating (4) with respect to z, gives

—id —iA ze_MAlé
f(2)= j“(l ¢)[e " 20+ y(x)]d;zﬁ,

- J.[—e‘” (e - 25)(ﬁ —1J +e A (ﬁ —1}}%dy(x) : (5)

which is the desired representation function. By this result, we note that the extreme points of
C (/1,5) are the unit point masses

| eter (e e o

with |x| =1 and the derivatives of the extreme points of C(4,5) are the point masses

£ (2)= 1+ (e —26e ) xz H=1.
A 1-xz (1- xz)

3. Coefficient Bound

Using the representation formula established in Theorem 2.2, we now obtain the coefficient
bound of functions in C(4,5).

Theorem 3.1

Suppose that f €S is given by (1), then the sharp inequality |an|§1+ A,;(n—1) holds for
n=2,3,4,.... Equality is attained for each n when f is an extreme point of C (/1,5).

Proof.

From (5) we write

e et - 20) , 26 A,,
f(z)—ﬂj[ o ﬂ(X)}W

and since

=3 (n+1)(x¢)" and

o0 1 n
- x¢) . ¢)3 =25+ 20",

then we have
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f(2)= J' M—e-” (" ~26)> (n+1(xg)" + ZAMe‘”Z%(n +1)(n+2)(xg)" Jd y(x)]dqﬁ ,

z

= .J[H (—e” (e - Zé)i(n +1)x" Jqﬁ” + (AweM i(n +1)(n+2)x" J¢“ }dy(x)d(;i ,

z
'3

_ [1+(_ei/1 (e—ifl _25))“.2([1 +1)x”d,u(X)J¢”]d¢

+ I A e Ui(n +1)(n+ 2)X”dﬂ(X)J¢” dg.

Integrating f(z) with respectto ¢ gives

n+l n+1

f(z)=z+ [(—e‘” (e - 25))IZ(n +1)x”d/~t(X)r?—+1] + [Ame‘”"‘Z(n +1)(n+2)x"d (x) ;H}y

X n=l

=7+ l(—e” (e - 25))Ian”’1d ,u(X)%] + {Awe”JAZn(n +1)x"d 2(x) %]

X h=2 X h=2
and upon factorization we obtain
Sid i i o n— z"
f(z):z+[(—e “e* -28)+ A e (n +1))£;nx ldy(x)}F. (6)

Now, comparing (6) and (1) gives
a = [—e‘” (e —28)+ A, (n +1)]J.x"‘1d 1(X),
X

~[1-2Ae™ + A (n+1)] j X"d 11(X),

X

~[1+ A, (n —1)Hx”’ld 2(%).

X

Then,

Xn—l

la,| = du(x) =1+ A,;(n-1)

1+ A e (n-1) I X"d 21(x)
X

<1+|A,e " (n-1) J'
X

and for n>2, we have |aﬂ| <1+A,;(n-1) as required. This completes the proof of Theorem
3.1 where the equality holds when f is an extreme point of C (1,5).
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