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ABSTRACT 

In this study, a system of first order ordinary differential equations is used to analyse the dynamics of 

cholera disease via a mathematical model extended from Fung (2014) cholera model. The global stability 

analysis is conducted for the extended model by suitable Lyapunov function and LaSalle’s invariance 

principle.  It is shown that the disease free equilibrium (DFE) for the extended model is globally 

asymptotically stable if 𝑅0
𝑞

< 1 and the disease eventually disappears in the population with time while 

there exists a unique endemic equilibrium that is globally asymptotically stable whenever 𝑅0
𝑞

> 1  for the 

extended model or  𝑅0 > 1 for the original model and the disease persists at a positive level though with 

mild waves (i.e few cases of cholera) in the case of𝑅0
𝑞

> 1. Numerical simulations for strong, weak, and no 

prevention and control measures are carried out to verify the analytical results and Maple 18 is used to 

carry out the computations.  

Keywords: Model, global stability, equilibrium, simulations.   

1.         Introduction 

Cholera, a disease of the small intestine, is the most popular of all water-borne infectious diseases. While 

intensive sanitation and availability of portable water have eliminated cholera in advanced countries of the 

world, the disease still remains a major threat to Africa and the entire less developed countries. The 

emergence and re- emergence of cholera in the developing countries has resulted to not only the mortality 

and morbidity of humans but also increase in the economic predicaments. Despite implementation of 

various intervention strategies towards the eradication of the disease, the disease continues to occur from 

time to time in the developing countries.  

Performing the global stability analysis of the equilibrium points of cholera models normally 

becomes a challenging mathematical problem due to the complexity and high dimension of the disease 

models (Shuai&Driessche, 2013). However, studying the global dynamics of epidemiological models is 

imperative because the global dynamics is essential in understanding the basic mechanism in disease 

initiation, spread and persistence, especially for the long term behaviour of the disease and its relationship 

with initial infection size. Such information will provide adequate guidelines for the public health 

administrators to design prevention and intervention strategies and to properly scale their efforts (Tian et 

al., 2010). 

Tian et al. (2010) extended Codeco’s model (2001) by incorporating various control strategies and 

conducted rigorous stability analysis using the theory of monotone dynamical system. They discovered that 

with strong control measures, the basic reproduction number will be reduced below unity so that the disease 
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free equilibrium is globally asymptotically stable but with weak control, a unique and globally stable 

endemic equilibrium would occur, though at a lower infection level. They concluded that practical 

endemism requires a reasonably higher value for the reproduction number which is possible in the absence 

of intervention. 

Apart from monotone dynamical system approach, geometric approach, Kirchoff’s matrix tree 

theorem and Lyapunov function have been employed to study the global dynamics of cholera models and 

other infectious disease models by a number of researchers most especially to prove the global stability of 

the endemic equilibrium (Tian& Wang, 2011; Cheng, Wang, & Yang, 2012; Buonomo&Lacitignola, 2010; 

Buonomo& Vargas-De-Leon, 2013). However, Lyapunov method has become a popular technique to study 

the global stability of epidemiological models in recent years. The Lyapunov function was applied by 

Shuai&Driessche (2013) to obtain the sufficient conditions for the global stability of infectious disease 

models. In what follows, the present study shall establish the global asymptotic stability of the disease free 

equilibrium of a cholera model using the model of Fung (2014) as a frame by constructing a suitable 

Lyapunov functions and LaSalle’s invariance principle. Vaccination and therapeutic treatment are the 

prevention and control measures that are used to extend the model of Fung.    

2. Methodology  

In this section, we present the original Fung model from which the extension and modification are made. 

2.1       Model Formulation 

The Fung model for cholera transmission is given as 

𝑑𝑠

𝑑𝑡
 = − 𝜆𝑆 + 𝜇𝑏𝑁 − 𝜇𝑑𝑆                                          (1) 

𝑑𝐼

𝑑𝑡
 = 𝜆𝑆 −  𝛾𝐼 − (𝜇𝑐 + 𝜇𝑑)𝐼                        (2) 

𝑑𝑅

𝑑𝑡
=  𝛾𝐼 − 𝜇𝑑𝑅             (3)  

 
𝑑𝐵

𝑑𝑡
=  𝜀𝐼 −  𝛿B              (4) 

 Where 𝜆 = 𝛽 [
𝐵

(𝐵+ℵ)
] , N = S + I +  R . 

 S, I, R and B are the state variables denoting susceptible, infectious, recovered and pathogen population 

respectively at time t, N is the total human population and , , , , , ,,
b d c

and         are 

parameters representing force of infection, birth rate, death rate unrelated to the disease, recovery rate 

unrelated to the treatment, death rate due to the disease, contact rate between susceptible individuals and 

contaminated water, pathogen concentration that yields 50% chance of catching cholera, rate at which 

infectious individuals contributes to the growth of  pathogen and natural death rate of the pathogen 

respectively.    

 Fung built the model on the assumptions that cholera confers permanent immunity and that; 

cholera can only be contracted through the ingestion of contaminated water. These are not realistic 

assumptions. cholera does not confer permanent immunity upon recovery. An individual who had been 



Ayoade et al.,Malaysian Journal of Computing, 3 (1): 28–36, 2018 

 

30 
 

recovered from cholera can still be reinfected if he comes in contact with the infection agents. Besides, the 

mode of transmission of cholera is not only through the contact with contaminated water but also through 

the contact with infectious individuals. Above all, the model does not involves control measures. 

2.2   The Extension and Modification of the Model 

The present study is aimed at improving on the model of Fung. We modify the model to incorporate 

vaccination and therapeutic treatment as prevention and control measures to cholera outbreak. The 

possibility of re-infection after recovery and the tendency of disease transmission from person-to-person 

are also considered. Vaccination is introduced to the susceptible population at a rate v1 (t), so that v1 (t) S 

(t) individuals per time are removed from the susceptible category and added to the recovered population. 

In the same manner, therapeutic treatment and vaccination are applied to the infected people at a rate 𝜌 (t), 

and v2(t) respectively so that 𝜌 (t)I(t) and v2(t)I(t)  individuals per time are removed from the infected class 

and added to the recovered class. Therapeutic treatment is in the form of administration of antibiotics or 

rehydration salts. When all these parameters are incorporated, we come about the below model 

 

1

2

2 1

( ) I

                                                                    (5)

c

ds
S S v S R

dt

dI
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dt

dR
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    

   

 

    

     

     

 
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B
I
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
 

 
   

                                                          (6) 

𝑣1 and  𝑣2 are vaccination rates before and during the outbreak respectively while 𝛽1 and 𝛽2 are contact 

rates with contaminated water and cholera patients’ wastes respectively. 𝜇 𝑎𝑛𝑑 𝜇𝑐  are death rates unrelated 

to cholera and due to cholera respectively. 𝜎is the rate of losing immunity while 𝜌 is the treatment rate. 𝜑 

stands for the force of infection,   is the recruitment rate and the interpretation for the state variables 

and other parameters remain as defined for Fung model in section 2.1 

 

3.0       Equilibrium Analysis 

3.1   Existence of the Disease Free Equilibrium State 

The disease free equilibrium (DFE) for model (5) is given by 

   E0 =(
𝜋

𝜇+𝑣1
 , 0 ,0, 0  ).           (7) 

In the absence of disease, the population size converges to the disease-free steady state  
𝜋

𝜇+𝑣1
 . Therefore, 

equation (5) shall be studied in the following feasible region 
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 =  {(𝑆, 𝐼, 𝑅, 𝐵) 𝜖 𝑅+
4       : 𝑆 ≥ 0, 𝐼 ≥ 0, 𝐵 ≥ 0, 𝑅 ≥ 0, 𝑆 + 𝐼 + 𝑅 + 𝐵 ≤  

𝜋

𝜇+𝑣1
}                    (8) 

3.2   Existence of Endemic Equilibrium State 

Asterisk is used to denote the endemic state of the state variables and the following equations are obtained 

for the endemic equilibrium 

 𝜋 − 𝜇S∗ −
𝛽1𝐵∗

𝐵∗+ℵ
𝑆∗ − 𝛽2𝐼∗𝑆∗ − 𝑣1𝑆∗ +  𝜎𝑅∗ =                     (9)                         

𝛽1𝐵∗

𝐵∗+ℵ
𝑆∗ + 𝛽2𝐼∗𝑆∗ − (𝜇 + 𝜇𝑐 + 𝑣2 + 𝜌 + 𝛾)I∗ = 0                                  (10) 

𝛾I∗ − 𝜇𝑅∗ + 𝑣2I∗ + 𝑣1𝑆∗ + ρI∗ − 𝜎𝑅∗            = 0                                  (11) 

𝜀𝐼∗ −  𝛿𝐵∗            = 0                                  (12)                     

Our intention is to solve for I and the algebraic manipulation of eqns (9) – (12) yields 

𝐼∗[𝛽2𝜀I∗2
{σd − eb} + I∗{e𝜋𝛽2𝜀 + 𝛽2ℵ𝛿(𝜎𝑑 − 𝑒𝑏) + 𝛽1𝜀(𝜎𝑑 − 𝑒𝑏) − 𝜀𝑏(𝑎𝑒 − 𝜎𝑣1)} + {eπ𝛽1𝜀 +

𝑒𝜋𝛽2ℵ𝛿 − ℵ𝛿𝑏(𝑎𝑒 − 𝜎𝑣1)}]  = 0                           (13) 

where  a =( 𝜇 +  𝑣1),  b = (𝜇 + 𝜇𝑐 + 𝑣2 + 𝜌 + 𝛾), d = (𝑣2 + 𝜌 + 𝛾) and e =  ( 𝜇 +  𝜎 ). 

Equation (13) has two solutions: 𝐼∗ = 0 which corresponds to the disease-free equilibrium and, 

{σd − eb}𝛽2𝜀I∗2
+ {e𝜋𝛽2𝜀 + 𝛽2ℵ𝛿(𝜎𝑑 − 𝑒𝑏) + 𝛽1𝜀(𝜎𝑑 − 𝑒𝑏) − 𝜀𝑏(𝑎𝑒 − 𝜎𝑣1)}𝐼∗ + {eπ𝛽1𝜀 +

𝑒𝜋𝛽2ℵ𝛿 − ℵ𝛿𝑏(𝑎𝑒 − 𝜎𝑣1)}=   0                                                             (14) 

For simplicity, equation (14) can be written as 

𝐴1I∗2
+ A2𝐼∗ + A3  =   0                                                                      (15) 

Equation (15) is a quadratic equation in I∗  

If 𝐴1 < 0  andA3  > 0  in (15) then 𝐼1
∗𝐼2

∗ =  
A3  

𝐴1
< 0  and one of 𝐼1

∗    or  𝐼2
∗    is necessarily positive. Hence, 

there exists a unique positive solution for  𝐼∗  in equation (15).   

By using the next generation matrix approach due to van den Driessche and Watmough (2002), the basic 

reproduction number for the extended model is obtained as 

𝑅0
𝑞 =

𝜋𝜀𝛽1+𝜋ℵ𝛿𝛽2

ℵ𝛿(𝜇+𝑣1)(𝜇+𝜇𝑐+𝑣2+𝜌+𝛾)
                     (16)  

The superscript q is used to emphasize the model with controls. Compared to the basic reproduction number 

for the original no-control model (Fung’s model) which is given as 

  𝑅0 =
𝜇𝑏𝛽𝑁

ℵ𝜇𝑑(𝛾+𝜇𝑐+𝜇𝑑)
                               (17) 

4.0           Stability Analysis 

4.1          Global Stability of Disease Free Equilibrium (DFE) 
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The following theorem shall be used to investigate the global asymptotic stability of the disease free 

equilibrium of the model equation (5)  

Theorem 1:      (Shuai& van den Driessche, 2013) 

If 𝑅0
𝑞 < 1, then the disease free equilibrium E0 of model (5) is globally asymptotically stable in  . 

Proof 

The variable S does not appear in the first term of susceptible compartment. Dropping this term, equation 

(5) reduces to 

                    

1

1

1

2

1

2 1

1

( v ) I

R

c

S S S v S R

I S

I R v I v S I R

B I B

  

    

   

 

    

     

     

 

                                                    (18) 

Define a linearLyapunov- LaSalle function M as  

M(S, I, R, B) = 𝑎1𝑆 + 𝑎2  I +   𝑎3𝑅 + 𝑎4𝐵                                                 (19) 

Where𝑎1 > 0, 𝑎2  > 0,   𝑎3 > 0 𝑎𝑛𝑑 𝑎4 > 0. 

Hence, the derivative of M w.r.t. t  in equation (19) is 

𝑑𝑀

𝑑𝑡
= 𝑎1𝑆| + 𝑎2  𝐼

| +   𝑎3𝑅| + 𝑎4𝐵|                                                            (20) 

The aim is to show that 
𝑑𝑀

𝑑𝑡
< 0  in   to establish that 𝑅0

𝑞 < 1 

Substituting equation (18) into equation (20) and collecting terms in terms of each variable then, 

𝑑𝑀

𝑑𝑡
       = -  (𝑎1𝜇 + 𝑎1𝜑 +  𝑎1𝑣1 −  𝑎2𝜑 −   𝑎3𝑣1)𝑆 

                                         - [𝑎2  (𝜇 + 𝜇𝑐 + 𝑣2 + 𝜌 + 𝛾) − {𝑎3(γ + 𝑣2 + 𝜌) + 𝑎4𝜀}]𝐼 

- 𝑎4𝛿(𝐵) - (𝑎3𝜇 + 𝑎3𝜎 −  𝑎1𝜎)𝑅                (21) 

Express (𝜇 + 𝜇𝑐 + 𝑣2 + 𝜌 + 𝛾) ,(γ + 𝑣2 + 𝜌),𝑣1  and (𝜇 + 𝑣1) in terms of the reproduction number in 

equation (16) and put the result in equation (21) then 

𝑑𝑀 

𝑑𝑡
=  -  {𝑎1 [

1

𝑅0
𝑞 (

𝜋𝜀𝛽1+𝜋ℵ𝛿𝛽2

ℵ𝛿(𝜇+𝜇𝑐+𝑣2+𝜌+𝛾)
) + 𝜑] − 𝑎2𝜑 − 𝑎3 (

𝜋𝜀𝛽1+𝜋ℵ𝛿𝛽2

(𝜇+𝜇𝑐+𝑣2+𝜌+𝛾)ℵ𝛿𝑅0
𝑞 − 𝜇)} 𝑆 

           - [𝑎2  
1

𝑅0
𝑞 (

𝜋𝜀𝛽1+𝜋ℵ𝛿𝛽2

ℵ𝛿(𝜇+𝑣1)
) − {𝑎3 [

1

𝑅0
𝑞 (

𝜋𝜀𝛽1+𝜋ℵ𝛿𝛽2

ℵ𝛿(𝜇+𝑣1)
) − (𝜇 + 𝜇𝑐)] + 𝑎4𝜀}] 𝐼 

           - 𝑎4𝛿(𝐵)  
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           - {𝑎3(𝜇 + 𝜎) − 𝑎1𝜎}𝑅                                                                                                          (22)  

Since equation (5) monitors human population then all the parameters as well as variables are non- negative 

and the coefficient of each state variable is considered negative in equation (22) i.e. 

-  {𝑎1 [
1

𝑅0
𝑞 (

𝜋𝜀𝛽1+𝜋ℵ𝛿𝛽2

ℵ𝛿(𝜇+𝜇𝑐+𝑣2+𝜌+𝛾)
) + 𝜑] − 𝑎2𝜑 − 𝑎3 (

𝜋𝜀𝛽1+𝜋ℵ𝛿𝛽2

(𝜇+𝜇𝑐+𝑣2+𝜌+𝛾)ℵ𝛿𝑅0
𝑞 − 𝜇)} < 0                   (23)                                                     

 - 𝑎4𝛿 < 0                                                                                                                                   (24) 

 - {𝑎3(𝜇 + 𝜎) − 𝑎1𝜎} < 0                                                                                                         (25)  

− [𝑎2  
1

𝑅0
𝑞 (

𝜋𝜀𝛽1+𝜋ℵ𝛿𝛽2

ℵ𝛿(𝜇+𝑣1)
) − {𝑎3 [

1

𝑅0
𝑞 (

𝜋𝜀𝛽1+𝜋ℵ𝛿𝛽2

ℵ𝛿(𝜇+𝑣1)
) − (𝜇 + 𝜇𝑐)] + 𝑎4𝜀}] < 0                           (26)  

∴equations (23) – (26) establish that 
𝑑𝑀 

𝑑𝑡
< 0 in . Moreover,

𝑑𝑀 

𝑑𝑡
 = 0 iff S= 0, I= 0, B= 0 and R= 0. Hence, 

the maximum invariant set in {(𝑆, 𝐼, 𝑅, 𝐵): 
𝑑𝑀 

𝑑𝑡
 = 0}  is the singleton {E0}.  By LaSalle’s invariance 

principle as in Bowong et al. (2011), E0 is globally asymptotically stable in the invariant region  where 

E0 is the disease free equilibrium of the model. 

5.0           Result and Analysis  

To validate the analytical results obtained in section 4, numerical simulations are provided. The graphical 

presentations in figures 1 - 3 show the scenario between susceptible, infective and time under the disease 

free and the endemic equilibria respectively. The graphs represent the results of the simulations and all 

computations are accomplished by Maple 18 software. Values are assumed for the parameters and state 

variables of the models to conduct the simulation and the results are presented graphically. The results 

demonstrate the effects of strong control, weak control and no control on the population of susceptible and 

infectious individuals over a period of time (30 days). The results obtained are based on the values assumed 

for the state variables and parameters. We expect fluctuation in these results if the values are varied. 
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Figure 1 depicts a situation when there is strong control. With the assumed values stated under figure 1 

together with  𝜋=0.1, 𝜀= 0.01, 𝛽1=0.03, 𝛽2=0.02, ℵ=0.04 and 𝛿=0.5, the reproduction number in equation 

(16) is simulated to be 0.011  i.e𝑅0
𝑞 = 0.011 <1 . The disease free equilibrium is globally asymptotically 

stable under this condition. Figure 1 shows that over the time span of 30 days when 𝑅0
𝑞 <1, the number of 

susceptible (S) and infective (I) decreases significantly as the days of infection increase and the disease 

eventually disappears with time. Figure 1 is obtained from equation (5).  

Similarly, using parameter values under figure 2 together with𝜋=0.2, 𝜀= 0.03, 𝛽1=0.045, 𝛽2=0.035, ℵ=0.06 

and 𝛿=0.5 to simulate equation (16) then 𝑅0
𝑞 = 3.232 >1 and the disease free equilibrium is unstable. 

This implies that there exists a unique endemic equilibrium that is globally asymptotically stable. Figure 2 

is a situation when the control is weak. From figure 2, it is observed that during the period of simulations 

the number of susceptible S and infectious I descend continuously though at a lower rate than figure 1. This 

shows that the number of infectious individuals after 5 days is higher in figure 2 than in figure 1. Therefore 

strong control measures perform better in eradicating cholera disease. Figure 2 is also obtained from 

equation (5). 
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Moreover, by using parameter values under figure 3 together with  𝛽 =0.5, ℵ=0.4to simulate equation (17) 

then,  𝑅0 = 341.131 >1 and the disease free equilibrium is unstable. It is observed from figure 3 that during 

the period of simulations the number of susceptible S and infectious I falls very slowly as the curves move 

away from the origin with larger number of infectious population at the end of the simulation which signals 

a major cholera tragedy in the population. Figure 3 is obtained from equations (1) – (4). 

6.0       Conclusion 

This work examined the global asymptotic stability of the two equilibrium states of a cholera model with 

prevention and control strategies. The DFE is globally asymptotically stable if 𝑅0
𝑞 <1 while the endemic 

equilibrium is globally asymptotically stable if 𝑅0
𝑞 >1. Graphical representations of the two cases i.e the 

DFE and the EE are provided with separate cases of mild endemism and major endemism i.e 𝑅0
𝑞 >1 

and 𝑅0 > 1. The graphs are used to illustrate the effect of strong control, weak control and no control on 

the dynamics of cholera disease with reference to the existence of  𝑅0
𝑞 <1, 𝑅0

𝑞 >1 and 𝑅0 > 1 .The results 

obtained in this work strongly suggest that each community especially in less developed countries like 

Nigeria should be on red alert against the possibility of cholera outbreak. Besides, we find that to prevent 

and eliminate cholera in the population, there is a need to decrease the transmission rate and increase the 

treatment rate through adequate prevention and control measures. On that ground, relevant agencies should 

deem it fit to provide adequate enlightenment and sensitization to the general public on the need for 

environmental sanitation, personal hygiene and the dangers of land and water pollutants. Besides, provision 

of drinkable water and immunization are also necessary as all these will work together to reduce the 

parameters ℵ, 𝜀, 𝛽1 , 𝜇𝑐 , and𝛽2. Above all, immediate response to cholera outbreak by the Government, 

health practitioners and the general public are capable of increasing the parameters 𝑣2 and 𝜌 and eventually 

bring the outbreak under control. 
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