UNIVERSITI TEKNOLOGI MARA

BUILDING EXTRACTION OF WORLDVIEW3 IMAGERY VIA SUPPORT VECTOR MACHINE USING SCIKIT-LEARN MODULE

NAJIHAH BINTI ISMAIL

Dissertation submitted in partial fulfillment of the requirements for the degree of Bachelor of Surveying Science and Geomatics (Hons)

Faculty of Architecture, Planning and Surveying

August 2020

AUTHOR'S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Najihah bt. Ismail
Student I.D. No.	:	2016490758
Programme	:	Bachelor of Surveying Science and
		Geomatics (Honours) – AP220
Faculty	:	Architecture, Planning & Surveying
Thesis/Dissertation	:	Evaluation of Land Use Land Cover Changes Impacts
Title		on Water Quality at Nerus River using Geospatial
		Techniques
Signature of Student	:	NAJ14A4
Date	:	August 2020

ABSTRACT

Building is one of the major features that available on the land used on the earth especially in urban area. By using remote sensing method, it can reduce time to collect data for a large area. The data can be gain in high or low resolution. Low resolution image is cheaper and easy to access meanwhile high resolution can provide a better view and more accurate to differentiate the features available on image. Nowadays, researchers have investigated the use of different approach for building classification and extraction. However, there is need to monitor the effectiveness of the method used effectively. Consequently, this study is intending to apply Support Vector Machine (SVM) classification which using Scikit-learn module for building classification. Moreover, the capability of the programming based using python for building extraction can be assessed. Python is an open source of programming software that conducted programming-based technique using the Scikit-Learn module to do the extraction of building from Land used land cover (LULC) and the result was 86.233% for overall accuracy. A Commercial Remote Sensing Technology (ENVI) was used and measured to improve and verify the performance of the Python programming-based picture classification by applying the same SVM algorithm and the tests indicated 95.0732% for an overall accuracy

TABLE OF CONTENT

C	ONFIRMATION BY PANEL OF EXAMINERS	ii
A	UTHOR'S DECLARATION	iii
A	BSTRACT	v
A	CKNOWLEDGEMENT	vi
TA	ABLE OF CONTENT	vii
LI	ST OF TABLES	X
LI	ST OF FIGURES	xi
LI	ST OF ABBREVIATIONS	xii
СНАР	TER ONE INTRODUCTION	1
1.1	RESEARCH BACKGROUND	1
1.2	PROBLEM STATEMENT	3
1.3	RESEARCH QUESTIONS	4
1.4	AIM	4
1.5	OBJECTIVE	4
1.6	SCOPE OF STUDY	4
1.6.1	STUDY AREA	4
1.7	SIGNIFICANT OF STUDY	5
СНАР	TER TWO LITERATURE REVIEW	6
2.1	INTRODUCTION	6
2.2	EXTRACTION OF BUILDING FROM LAND USED LAND COVER	
CLA	SSIFICATION.	6
2.3	SUPPORT VECTOR MACHINE	8
2.4	SCIKIT-LEARN MODULE IN PYTHON	10
СНАР	TER THREE METHODOLOGY	11
3.1	INTRODUCTION	11
3.2	RESEARCH METHODOLOGY	11

1.3 PROJECT PLANNING	13
3.3.1 STUDY AREA	13
3.3.2 SOFTWARE USED	14
3.4 DATA COLLECTION	15
3.4.1 WORLD-VIEW 3 IMAGE	15
3.5 IMAGE SHARPENING	16
3.6 IMAGE PRE-PROCESSING	16
3.6.1 RADIOMETRIC CORRECTION	16
3.6.1.1 ATMOSPHERIC CORRECTION	16
3.6.2 GEOMATRIC CORRECTION	17
3.7 TRAINING SAMPLE	17
3.8 LIBRARIES USED IN PYTHON	17
3.8.1 GDAL	17
3.8.2 NUMPY	18
3.8.3 MATPLOTLIB	18
3.8. SCIKIT-LEARN (MACHINE LEARNING IN PYTHON)	18
3.8.1 SUPPORT VECTOR MACHINE	18
3.9 ACCURACY ASSESSMENT	19
3.10 BUILDING EXTRACTION	19
CHAPTER FOUR RESULT AND ANALYSIS	20
4.1 INTRODUCTION	20
4.2 CLASSIFICATION OF LAND USED LAND COVER (LULC)	20
4.2.1 PYTHON	21
4.2.1.1 CLASSIFICATION RESULT	21
4.2.1.2 BUILDING EXTRACTION RESULT	22
4.2.1.3 ACCURACY ASSESMENT RESULT	23
4.2.2 ENVI	24