SYNTHESIS AND CHARACTERIZATION OF MAGNETIC TITANIUM DIOXIDE NANOPARTICLES, Fe-TiO₂ NPs FOR ADSORPTION OF LEAD ION

NURUL SYUHADA BINTI ZULHILMI

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2019

This Final Year Project Reported entitled "Synthesis and Characterization of Magnetic Titanium Dioxide Nanoparticles, Fe-TiO₂ NPs for Adsorption of Lead Ion" was submitted by Nurul Syuhada binti Zulhilmi, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Nurul Huda Abdul Halim Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Siti Zaubidah Abdullah Co-Supervisor Physics and Materials Science Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Nurul Huda Abdul Halim Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan Mazni Musa Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date: _____

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	Х

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Significance of Study	4
1.4	Objectives	5

CHAPTER 2 LITERATURE REVIEW

2.1	Titani	um Dioxide Nanoparticle, TiO ₂ NPs	6
	2.1.1	Magnetic Nanoparticles	7
2.2	Banan	a Peel Extract	8
2.3	Synthe	esis of TiO ₂ NPs	9
	2.3.1	Biological Green Synthesis Method	9
	2.3.2	Chemical Sol-Gel Method	10
	2.3.3	Hydrolysis Reaction Method	11
2.4	Synthe	esis of Magnetic Nanoparticle by Co-precipitation Method	12
2.5	Applic	cation of TiO ₂ NPs	12
	2.5.1	Application of Magnetic NPs	13
2.6	Heavy	metal	14
	2.6.1	Lead (Pb)	14
	2.6.2	Hazard of lead	15
	2.6.3	Magnetic NPs for Removal of Lead	16
2.7	Chara	cterization of TiO ₂ NPs and Fe-TiO ₂ NPs	17
	2.7.1	Fourier Transform Infrared Spectroscopy (FTIR)	17
	2.7.2	X-Ray Diffraction	18
	2.7.3	Field Emission Microscopy (FESEM)	19
2.8	Adsor	ption Study	20

CHAPTER 3 METHODOLOGY

3.1	Materials		
	3.1.1	Raw Materials	22
	3.1.2	Chemicals	22

	3.1.3	Apparatus	22
3.2	Metho	ds	22
	3.2.1	Banana Peel Extract Preparation	22
	3.2.2	Synthesis of TiO ₂ NPs with Banana Peel Extract	23
	3.2.3	Synthesis of Magnetic Titanium Dioxide Nanoparticles,	23
		Fe-TiO ₂ NPs	
	3.2.4	Characterization of Synthesized TiO ₂ NPs and Fe-TiO ₂ NPs	24
3.3	Adsor	ption Studies	25
	3.3.1	The Effect of pH towards Fe-TiO ₂ NPs	25
	3.3.2	The Effect of Initial Concentration towards Fe-TiO ₂ NPs	26
	3.3.3	The Effect of Fe-TiO ₂ NPs Dosage Used	27
	3.3.4	Adsorption Efficiency of Lead Ion	27
3.4	Desor	ption Study	28
	3.4.1	The Effect of Different Eluent for Desorption of Lead Ion	28
	3.4.2	Desorption Efficiency of Lead Ion	29
3.5	Applic	cation of Fe-TiO ₂ NPs	30
	3.5.1	Determination of Pb ²⁺ ions Present in Lake Water Sample	30

CHAPTER 4 RESULTS AND DISCUSSION

4.1	The St	udy of Synthesized Magnetic Titanium Dioxide Nanoparticles,	31
	Fe-TiO	D ₂ NPs	
	4.1.1	Physical Study of Titanium Dioxide Nanoparticles, TiO ₂ NPs	31
	4.1.2	Physical Study of Fe-TiO ₂ NPs	31
4.2	Charac	cterization of Synthesized Samples	32
	4.2.1	The Study of Fourier Transform Infrared Spectroscopy (FTIR)	32
	4.2.2	The Study of X-Ray Diffraction (XRD)	35
	4.2.3	The Study of Field-Emission Scanning Electron Microscopy-	36
		Energy Dispersive Spectroscopy (FESEM-EDX)	
4.3	Adsor	ption Studies	39
	4.3.1	The Study on Effect of pH towards Fe-TiO ₂ NPs	39
	4.3.2	The Study on Effect of Initial Concentration towards	41
		Fe- TiO ₂ NPs	
	4.3.3	The Study on Effect of Fe-TiO ₂ NPs Dosage Used	43
4.4	Desor	ption Study	44
4.5	The St	udy of Determination of Pb ²⁺ ions in Lake Water Sample	46

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	48
5.2	Recommendations	50
CIT	TED REFERENCES	51
APH	PENDICES	59

ABSTRACT

SYNTHESIS AND CHARACTERIZATION OF MAGNETIC TITANIUM DIOXIDE NANOPARTICLES, Fe-TiO₂ NPs FOR ADSORPTION OF LEAD ION

Titanium dioxide nanoparticles, TiO₂ NPs were synthesized by green synthesis using banana peel extract while magnetic TiO₂ nanoparticles. Fe-TiO₂ NPs were synthesized by a co-precipitation method using $FeSO_4.7H_2O$. The obtained TiO_2 NPs and Fe-TiO₂ NPs have been characterized using FTIR, XRD and FESEM-EDX. The hydroxyl and carbonyl group present in banana peel extract were responsible for the formation of highly stable TiO₂ NPs in FTIR analysis. The absorption band decreased in Fe-TiO₂ NPs because TiO₂ NPs were reduced when synthesizing Fe-TiO₂ NPs. XRD pattern for both NPs showed a similar result which indicated the formation of anatase phase of titanium dioxide. TiO₂ NPs and Fe-TiO₂ NPs were also characterized by FESEM under electron microscopy with 50 Kx and 80 Kx magnifications respectively. FESEM micrograph of TiO₂ NPs shows a spherical shape bonded to each other while Fe-TiO₂ NPs aggregated with spherical shape particles. The average diameter of Fe-TiO₂ NPs was found to be around 26.08 nm confirming that the synthesized Fe-TiO₂ NPs was in the nanometer range. The adsorption efficiency of heavy metal ion (lead ion) in the adsorption process at various experimental parameters such as pH, initial concentration of Pb(NO₃)₂ solution and adsorbent dosage were investigated. Desorption process of lead ion has been conducted at optimum parameters for different eluents, HCl and CH₃COOH. The extent of adsorption efficiencies and desorption efficiency by Fe-TiO₂ NPs were characterized using AAS. The optimum removal for lead ion was obtained at pH 5, 50 ppm concentration of Pb(NO₃)₂ solution and 0.04 g adsorbent dosage. HCl was the best eluent showed a higher desorption efficiency than CH₃COOH. The application of Fe-TiO₂ NPs was tested at lake water sample in UiTM Kuala Pilah and was found that adsorption process occurred at acidic condition. From the test conducted, the amount of Pb^{2+} ions exceeds the acceptable value standard of 0.05 ppm. The lake water was contaminated with Pb^{2+} ions that will come from various sources.