SYNTHESIS, CHARACTERISATION AND ANTI-CORROSION SCREENING OF THIOSEMICARBAZONE LIGANDS IN ACIDIC AND SALT MEDIA

NURHANANI BINTI MOHD KAMARUDIN

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2019

This Final Year Project Reported entitled "Synthesis, Characterisation and Anti-Corrosion Screening of Thiosemicarbazone Ligands in Acidic and Salt Media" was submitted by Nurhanani Binti Mohd Kamarudin, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

> Dr Nur Nadia Dzulkifli Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Nurul Huda Abdul Halim Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan Mazni Musa

Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date:

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix
ABSTRACT	xi
ABSTRAK	xii

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
1.2	Problem statement	5
1.3	Significant of the study	6
1.4	Objective	7

CHAPTER 2 LITERATURE REVIEW

2.1	Synthesis of Schiff base ligand.		8
2.2	Thiosemicarbazone and their metal complexes		9
2.3	Corros	11	
	2.3.1	Effect of concentration	12
	2.3.2	Effect of molecular structure	13
2.4	Application		14
	2.4.1	Biological activity	14
	2.4.2	Heavy metal removal	15

CHAPTER 3 METHODOLOGY

3.1	Material		17
	3.1.1	Chemical	17
	3.1.2	Apparatus	17
	3.1.3	Instrument	17
3.2	Method	l	18
	3.2.1	Synthesis of 4-acetylpyridine 1-acetyl-3- thiosemi- carbazone	18
	3.2.2	Synthesis of 1-methanal 1-acetyl-3-thiosemi- carbazone	19
	3.2.3	Melting point	20

3.3	Characterisation		20
	3.3.1	Fourier Transform Infrared (FTIR)	20
	3.3.2	UV-Visible	20
	3.3.3	Nuclear Magnetic Resonance (NMR)	20
3.4	Corrosion Inhibition Study		21
	3.4.1	Preparation of solution	21
	3.4.2	Weight loss method	21

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Synthesis of ligand		22
4.2	Melting Point		23
4.3	Infrare	d Spectra Data	23
	4.3.1	4-acetylpyridine 1-acetyl-3-thiosemicarbazone	24
	4.3.2	1-methanal 1-acetyl-3-thiosemicarbazone	28
4.4	UV-Vi	s Spectra	31
	4.4.1	4-acetylpyridine 1-acetyl-3-thiosemicarbazone	31
	4.4.2	1-methanal 1-acetyl-3-thiosemicarbazone	35
4.5	Nuclea	r Magnetic Resonance (NMR)	37
	4.5.1	4-acetylpyridine 1-acetyl-3-thiosemicarbazone	38
	4.4.2	1-methanal 1-acetyl-3-thiosemicarbazone	40
4.6	Corros	ion Inhibition Study	41
	4.6.1	Acidic media	42
	4.6.2	Salt media	47

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 5.2	Conclusion Recommendation	53 54
REFE	RENCES	55
APPENDICES		59
CURR	71	

ABSTRACT

SYNTHESIS, CHARACTERISATION AND ANTI-CORROSION SCREENING OF THIOSEMICARBAZONE LIGANDS IN ACIDIC AND SALT MEDIA

Nowadays, industrial sector facing a problem of corrosion of metal due to the chemical reaction and environment that cause the degradation of the metal surface. The industrial sector structure are exposed to the condition that accelerate the corrosion process. Acid solution are widely used in industrial acid cleaning but at the same time, it also promote the accelerating of corrosion same goes with the salt solution that can also promote the corrosion rate. Due to that, the use of inhibitor are more likely can prevent this problem. Thiosemicarbazone (TSC) with the presence of sulfur and nitrogen atom can act as a corrosion inhibitor since it will form a protective layer on the metal surface and inhibit the activation corrosion site. The ligand 4-acetylpyridine 1-acetyl-3-thiosemicarbazone (4Acpy1Ac3TSC) and 1-methanal 1-acetyl-3-thiosemicarbazone (1Met1Ac3TSC) were successfully synthesised by a condensation method. The compounds were characterised by using Fourier Transform Infrared (FTIR), UV-Visible and Nuclear Magnetic Resonance (NMR) spectroscopies. The melting point of the ligands were higher than raw materials as expected. The FT-IR spectra data show the presence of stretching band of C=S at 1261 cm⁻¹ and C=N at 1655 cm⁻¹ in 4Acpv1Ac3TSC and 1699 cm⁻¹ in 1Met1Ac3TSC that proved the structures of ligand. The ¹³C NMR spectra show the formation of C=N, C=S due to the chemical shift at 174.82 ppm, 182.21 ppm respectively for 4Acpy1Ac3TSC and 171.36 ppm (C=N) and 182.90 ppm (C=S) for 1Met1ac3TSC. The UV-Vis analysis showed electronic transitions which are $\pi \rightarrow \pi^*$, $n \rightarrow \sigma^*$ and $n \rightarrow \pi^*$ shifting to the lower wavelength from its raw materials. The ligands undergo hypsochromic shifting as the absorption peaks shifted to the shorter wavelength. The corrosion inhibition study showed that the inhibition efficiency higher in 4Acpy1Ac3TSC compare to 1Met1Ac3TSC due to the presence of aromatic ring in the 4Acpy1Ac3TSC that resonance effect where the electrons are pushed towards the aromatic ring and increase the electron density, thus increase the corrosion inhibitor efficiency. The corrosion inhibitor efficiency increases as the corrosion inhibitor concentrations increased.