SYNTHESIS AND CHARACTERIZATION OF POLYANILINE/MUSSEL SHELL COMPOSITES

NORHIDAYAH BINTI RAMLI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2019

This Final Year Project Reported entitled "Synthesis and Characterization of Polyaniline/Mussel Shell Composites" was submitted by Norhidayah binti Ramli, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Dr. Kavirajaa Pandian A/L Sambasevam Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

> Dr. Siti Nor Atika Baharin Co-Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Nurul Huda Abdul Halim Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan Mazni Musa Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date:		

TABLE OF CONTENTS

TAI LIS LIS LIS ABS	KNOWLEDGEMENTS BLE OF CONTENTS ST OF TABLES ST OF FIGURES ST OF ABBREVIATIONS STRACT STRAK	Page iii iv vi vii viii X
CH	APTER 1 INTRODUCTION	
1.1	Background of Project	1
1.2		3
1.3	5	4
1.4	Objectives	5
CH	APTER 2 LITERATURE REVIEW	
2.1	Polymers	6
2.2		7
2.3	J , 1	9
2.4		11
2.5	5	12
	2.5.1 Electrochemical polymerization	12
	2.5.2 Chemical polymerization	13
	Bio-filler composite	14
2.7	Mussel shell (MS)	15
CH	APTER 3 METHODOLOGY	
3.1		17
	3.1.1 Raw materials	17
	3.1.2 Chemicals	17
	3.1.3 Apparatus	18
3.2	1	18 18
3.3	Synthesis of PANI using ex-situ polymerization technique	
3.4	1	19
3.5	1	19
	3.5.1 Fourier Transform Infrared (FTIR) Spectroscopy	19
	3.5.2 Ultraviolet-Visible (UV-Vis) Spectroscopy	20
	3.5.3 Electrical conductivity	20

CH	APTER 4 RESULTS AND DISCUSSION	
4.1	Synthesis of PANI	22
4.2	Fourier Transform Infrared (FTIR) Spectroscopy Analysis	24
4.3	Ultraviolet-Visible (UV-Vis) Spectrophotometer	27
4.4	Electrical Conductivity	29
	APTER 5 CONCLUSION AND RECOMMENDATIONS	
5.1	Conclusion	31
5.2	Recommendations	32
CITED REFERENCES		33
API	PENDICES	37
CUI	RRICULUM VITAE	39

ABSTRACT

SYNTHESIS AND CHARACTERIZATION OF POLYANILINE/MUSSEL SHELLS COMPOSITES

Polyaniline/Mussel shells composites (PANI/MS) was prepared by using the exsitu polymerization technique and investigated by using Fourier Transform Infrared (FTIR), Ultraviolet-Visible (UV-Vis) and Electrical Conductivity Analysis. PANI was composed from the reaction of aniline, ammonium persulfate (APS) and dodecylbenzenesulfonic acid (DBSA) at fixed ratio of 1:1:1.4, respectively. The addition of the MS powder in the PANI system at the different ratio which were 1:0.5, 1:1, 1:2 in order to prepare the different ratio of PANI/MS composites and mixed it by using the sonication process. The FTIR spectrum shows frequency variation and provides a functional group that conforms to the PANI/MS composites presence. The formation of PANI/MS composites were confirmed by the observation of the shifting of the peaks at the wavenumber of 3400-3450 cm⁻¹ (hydroxyl peaks) and 1450-1470 cm⁻¹ for different ratio of composites. The absorption spectra of the different ratio of PANI/MS were observed through UV-Vis. The absorption peaks at the wavelength of 700-800 nm has been suppressed when the addition of the MS for the different ratio of composites. Based on the electrical conductivity result by using FLUKE Multimeter shows that the PANI/MS with the ratio (1:0) give the highest value compare to the others PANI/MS composites.