OPTIMIZATION OF PECTIN EXTRACTION FROM CALAMANSI (*Citrofortunella Microcarpa*) WASTE

MUHAMMAD TAUFIQ BIN SAIFFULLAH

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Sciences (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2019

This Final Year Project Reported entitled "**Optimization of Pectin Extraction From Calamansi** (*Citrofortunella Microcarpa*) **Waste**" was submitted by Muhammad Taufiq Bin Saiffullah, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

> Hasratul Nadiah Binti Mohd Rashid Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Nurul Huda Abdul Halim Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan Mazni Musa

Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date:

TABLE OF CONTENTS

ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS ABSTRACT ABSTRAK			Page iii iv vi vi vii viii ix x
CHA	APTER	1 INTRODUCTION	
1.1	Backg	ground of study	1
1.2		em statement	3
1.3	-	icant of study	4
1.4	Object	tives	5
CHA	APTER	2 LITERATURE REVIEW	
2.1	Calam	nansi	6
2.2	Pectin	L	9
2.3	Method extraction		11
	2.3.1	Solvent extraction	11
		Effect of pH solvent	13
		Effect of extraction temperature	14
	2.3.4	Effect of extraction time	14
CHA	APTER	3 METHODOLOGY	
3.1	Materi	ials	15
	3.1.1	Raw materials	15
	3.1.2	Chemical	15
	3.1.3	Apparatus	15
	3.1.4	Sample analysis	15
3.2	Metho	ods	16
	3.2.1	Sample preparation	16
	3.2.2	Optimization of pH	17
	3.2.3	Optimization of extraction temperature	19
	3.2.4	Optimization of extraction time	19
3.3		nination of percentage pectin yield	21
3.4	Deterr	mination of degree of esterification (DE)	21
CHA	APTER	4 RESULTS AND DISCUSSION	
4.1	Pectin	Extraction from calamansi waste	23
	4.1.1	Optimization of pH	23
	4.1.2	Optimization of extraction temperature	24
	4.1.3	Optimization of extraction time	25

4.2	Degree of esterification	26
4.3	FTIR analysis	27
СН	APTER 5 CONCLUSION AND RECOMMENDATIONS	
5.1		29
5.2	Recommendations	30
CITED REFERENCES		
API	PENDICES	35
CURRICULUM VITAE		

ABSTRACT

OPTIMIZATION OF PECTIN EXTRACTION FROM CALAMANSI (*Citrofortunella Microcarpa*) WASTE

Citrofortunella Microcarpa also known as calamansi is one of the fruits that rich nutrient sources. This species is commonly known under the Rutaceae family. Calamansi waste might increase an environmental problem for local communities. Pectin is a complex polysaccharide that can be found in middle lamella of plant cell membrane. Pectin is commercially used for gelling purpose in many industries. Therefore, this study was focused on exploring the possibility of using waste calamansi as a commercial pectin using ethanol precipitation extraction method. The extraction of pectin from calamansi wastes was used under three different conditions which are pH, temperature and time. Fourier Transform Infrared (FTIR) Spectroscopy was used in the identification of main functional group of pectin extract from calamansi waste. As a result, the optimal conditions for pectin extraction were determined as follows temperature 90°C, extraction time 60 minutes and pH 1. Under these conditions, the pectin yield was 8.95% and the degree of esterification was 48.32%. Based on the degree of esterification, calamansi wastes pectin can be categorized as low methoxyl pectin due to value degree of esterification has lower than 50%. In conclusion, the pectin extracted from calamansi waste by using ethanol precipitation extraction method could be a solution to the pollution problem. The method used is the simplest technique for extraction and its safe. Besides that, the optimized process can provide useful guidance for further studies on pectin extraction. Result obtained of calamansi waste can be used as the potential sources of pectin in industry.