PERFORMANCE ANALYSIS OF IN HOME POWERLINE COMMUNICATION NETWORKS

INSTITUT PENYELIDIKAN, PEMBANGUNAN DAN PENGKOMERSILAN UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

BY :

TUAN SYAHIRAH BINTI TUAN YAAKUB FADZIL BIN AHMAD NOOR AZILA BINTI ISMAIL

MAY 2007

CONTENTS

FRO	ONT COVER		
ΤΙΤΙ	LE PAGE		
LET	TER OF RESEARCH OFFER		
LET	TER OF REPORT SUBMISSION		
PRO	DJECT TEAM MEMBERS		
ACK	KNOWLEDGEMENTS	i	
CON	NTENTS	ii	
LIST	Γ OF ILLUSTRATIONS	iv	
LIST	Γ OF TABLES	vi	
ABBREVIATION			
ABS	TRACT	ix	
CHA	APTER 1: INTRODUCTION		
1.1	Introduction	1	
1.2	Objectives	2	
1.3	Report Layout	2	
CHA	APTER 2: LITERATURE REVIEW		
2.1	Introduction	4	
2.2	Powerline Overview	4	
	2.2.1 Low Frequency Transmission	7	
	2.2.2 High Frequency Transmission	8	
	2.2.3 Regulatory Framework	9	
2.3	Powerline Carrier (PLC) Communications System Description		
	2.3.1 PLC Network Topology	12	
	2.3.2 PLC Channel Model	13	
	2.3.3 PLC Mac Protocol	17	

CHAPTER 3: HOME NETWORKING OVER POWERLINE

Introduction		
Home Networking Challenges		
Home	Networking Technologies	25
3.3.1	Structured Wiring Technology	27
3.3.2	Existing Wiring Technology	27
3.3.3	Wireless Technology	30
In-ho	ne PLC Networks	32
3.4.1	Advantages of In-Home PLC Networking	33
3.4.2	Disadvantages of In-Home PLC Networking	33
	Introd Home 3.3.1 3.3.2 3.3.3 In-hon 3.4.1 3.4.2	Introduction Home Networking Challenges Home Networking Technologies 3.3.1 Structured Wiring Technology 3.3.2 Existing Wiring Technology 3.3.3 Wireless Technology In-home PLC Networks 3.4.1 Advantages of In-Home PLC Networking 3.4.2 Disadvantages of In-Home PLC Networking

CHAPTER 4: METHODOLOGY

4.1	Introduction	
4.2	OMNet++ Simulator	
	4.2.1 Hierarchical Model	36
	4.2.2 Module Type	37
	4.2.3 Messages, gates, links	37
	4.2.4 Parameters	38
	4.2.5 Topology Description Method	38
4.3	In-Home PLC Network Model	39
	4.3.1 Introduction	39
	4.3.2 8 Nodes Model	41
	4.3.3 6 Nodes Model	44
	4.3.4 Node and Hub Module	45
4.4	In-Home PLC Network Model Operation	49
	4.4.1 CSMA/CD Protocol	49
	4.4.2 States in Frames Transmission	53
4.5	Data Collection	54
	4.5.1 Queuing delay, End-to-End delay and Transmission delay	54
	4.5.2 Throughput	57
4.6	Verification of the Network Operation	58

ABSTRACT

The development of the mains powerline to provide communication services in the generally-known broadband application is receiving attention from electricity utilities and communication companies. The opportunity to provide Internet services, video-on-demand, and video streaming directly into the home or industrial building at cost effective prices and at a time when customers require such services is an opportunity not to be missed. Powerline Communication technology utilizes the existing wiring systems to distribute high-speed data and video throughout the home. The main advantages are due to its universal existence in homes, the ubiquity of electrical outlets and the simplicity of the power plug.

In this project, three types of home network designs are modeled and investigated by using the discrete event simulator called OMNeT++. The models are based on semi-detach house design and double-storey terrace house design for 8 nodes models and apartment design for 6 nodes model. The performance of the PLC networks operating over different number of channels and cable lengths are evaluated with the different network parameter such as the buffer size and the frame length. The evaluation is based on the queuing delay and the throughput of the network.

From the simulation results, graphs of queuing delay and throughput versus data rates are plotted. From the graphs it is shown that the number of channels and the cable lengths affects the performance of the networks. For 8 nodes model, network with 8 channels gives better performance compared to 4 channels. While 6 nodes model with 6 channels has given better throughput value than 6 modes model with 3

īΧ

channels. However, the effect of the cable length to the network performance is not very obvious since the lengths and the differences between them are small. This can be shown from all the layout models where the cable length used in each model measuring from the node to the hub is only in the range of 3 to 15 meters long. The effect of the buffer size and the frame length gives the unreliable results when it is plotted into graphs. This is due to the insufficient length of simulation time for data collection.