THE PROBABILISTIC SEISMIC HAZARD ANALYSIS (PSHA): ASSESSMENT ON SITE SPECIFIC RESPONSE SPECTRUM ACCELERATION OF UITM PENANG DUE TO SUMATRAN EARTHQUAKE

DISEDIAKAN OLEH :

SHAFIENAZ ISMAIL Ir Dr MOHD FARID AHMAD HAZRINA AHMAD

MEI 2009

TABLE OF CONTENTS

ACI	KNOWI	LEDGEMENT	i		
TABLE OF CONTENTS					
LIS	LIST OF FIGURES LIST OF TABLES				
LIS					
LIST OF ABBREVIATIONS LIST OF APPENDICES					
					ABS
СН	APTER	1			
1	INTRODUCTION				
	1.1	Background of the Study	1		
	1.2	Problem Statement	2		
	1.3	Objectives of the Study	3		
	1.4	Significant of the Study	3		
	1.5	Scope of the Study	4		
CH	APTER	2			
2	LITI	ERATURE REVIEW	5		
	2.1	Earthquakes	5		
	2.2	Magnitude of Earthquake	6		
	2.3	El-Centro Earthquake (Imperial Valley Earthquake)	7		
	2.4	Effect of Earthquake to Malaysia	8		
		2.4.1 Frame Behavior during Earthquake	9		
	2.5	Impact of Earthquake	10		
		2.5.1 Impact to Concrete Soft Storey Structure	11		
		2.5.2 Impact to Concrete Beam - Column Connection	15		
	2.6	Earthquake Loading	18		

	2.7	Uniform Building Code 1997 (UBC 97)	19
		2.7.1 Static Lateral Force Method	19
	2.8	LUSAS	20
		2.8.1 IMDplus	21
		2.8.2 Lateral Displacement	21
	2.9	IDARC2D	22
	2.10	Damage Analysis of Reinforced Concrete Structure	23
CHA	PTER	3	
3	MET	HODOLOGY	25
2 1			
3.1	Brief	Methodology	27
3.2	Phase	e 1: Inter-Storey Drift Determination	28
	3.2.1	Uniform Building Code 1997 (UBC-97)	28
	3.2.2	Time History Analysis by IMDplus	37
3.3	Phase	2: Comparison of Inter-Storey Drift	38
3.4	Phase 3: Damage Analysis by using IDARC2D		
	3.4.1	Element Types	38
	3.4.2	Element Data	39
	3.4.3	System of Units	39
	3.4.4	Nodal Weight	39
	3.4.5	Column Dimension	39
	3.4.6	Beam Dimension	40
	3.4.7	Long-Term Loading	41
	3.4.8	Dynamic Analysis Control Parameters	41
	3.4.9	Storey Output	41

CHAPTER 4

4	RESU	ULTS AND ANALYSIS	42	
4.1	Gener	General		
4.2	Maxii	43		
	4.2.1	Soft Storey Analysis	44	
4.3	Comp	47		
	4.3.1	Displacement	47	
	4.3.2	Inter-Storey Drift	49	
4.4	Dama	54		
	4.4.1	Damage Index	56	
CHA	APTER :	5		
5	CON	57		
	5.1	Conclusions	57	
	5.2	Recommendations	58	
REF	59			
APPENDICES			62	
	А	Loading Analysis		
	В	Calculations of UBC		
	С	Results of IMDplus Analysis		
	D	Input IDARC2D		

ABSTRACT

Penang is one of the areas that felt the shake from the Great Andaman-Sumatran Earthquake especially in high-rise building. As in Complex Perdana UiTM Penang that chosen for this case study, some elements in the building have encounter damages even if the epicentral of the earthquake far. To evaluate the weakest beam-column connection of Complex Perdana, the strength of a building was evaluated in terms of displacement and inter-storey drift index undergo by the building by conducting Time History Analysis using LUSAS MODELLER in Interactive Modal Dynamics (IMDplus) program. As comparison, Lateral Force Distribution method from Uniform Building Code 1997 (UBC-97) was adopted. For both method, the building was analyzed as a frame and a two dimensional model was developed. Loading analysis was made by referring to BS 8110 Part 1, 1997. The beam-column connection with highest inter storey drift index was classified as the weakest part and failure probabilities that may occurred computed by IDARC2D program according to its damage index. As the connection was determined, action can be made at that point so that the building is safe.