IMPROVED VOTING TECHNIQUE FOR ENSEMBLE OF MLP SYSTEM APPLIED ON VARIOUS CLASSIFICATION DATA

INSTITUT PENGURUSAN PENYELIDIKAN UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

BY:

SAODAH OMAR IZA SAZANITA ISA ASS. PROF. DR JUNITA MOHD SALEH

MAY 2010

TABLE OF CONTENTS

Page

AC	ii			
TA	iii			
LIS	vi			
LIS	vii			
LIS	ix			
AB	x			
AB	STRACT	xi		
1	INTRODUCTION	1		
1.0	Introduction	1		
1.1	Neural Network for Classification	1		
1.2	1.2 Problem Statement			
1.3	Objectives and Scope	2		
1.4	Outline of Project	3		
2	LITERATURE REVIEW	5		
2.0	Introduction	5		
2.1	Biological Neural Networks versus Artificial Neural Network	5		
2.2	Artificial Neural Network Characteristics	8		
2.3	Artificial Neural Network			
	2.3.1 Feed Forward ANN	10		
	2.3.2 Training Process	11		
	2.3.2.1 Supervised Training	11		
	2.3.2.2 Unsupervised Training	12		
	2.3.2.3 Reinforcement Training	12		
2.4	Multilayer Perceptron			
	2.4.1 Activation Function			
	2.4.2 MLP Learning Algorithm	17		
	2.4.2.1 Levenberg Marquardt	20		

	2.4.2.2 Resilient Back Propagation (RP)	20			
2.5	Neural Network Application				
2.6	Application of MLP for Classification Problem				
2.7	Application of Voting Technique	24			
3	METHODOLOGY	25			
3.0	Introduction	25			
3.1	Proposed System	25			
3.2	Development of Individual MLP Classifier	26			
3.3	3 Development of Multiple MLP System				
3.4	Majority voting				
	3.4.1 Implementation of Confidence Level	30			
25	Case Study: Triangular Wayoform Classification	30			
5.5	3.5.1 Data Preparation	31			
	3.5.2 Development of Multiple MI P	34			
	3.5.3 Implementation of Voting Technique	35			
		00			
3.6	Case Study: Breast Cancer Detection	38			
	3.6.1 Data Preparation	39			
	3.6.2 Development of Multiple MLP System	41			
	3.6.3 Implementation of Voting Technique	41			
3.7	Case Study: Transportation Classification	43			
	3.7.1 Data Preparation	43			
	3.7.2 Development of Multiple MLP System	44			
	3.7.3 Implementation of Voting Technique	45			
3.8	Performance Assessment	45			
3.9	Summary	46			
4	RESULTS AND ANALYSIS	47			
4.0	Introduction	47			
4.0					
4.1	4.1.1 Lovenberg Marguardt (LM)				
	4.1.2 Resilient Back Propagation (RP)	47 70			
	4.1.3 Performance on Testing Phase of Two Algorithm	40			
	4.1.4 Majority Voting: Triangular Waveform Classification	50			
		51			

	4.1.5	Comparison with Previous Study	51
4.2	Case Study: Breast Cancer Detection		52
	4.2.1	Levenberg Marquardt	52
	4.2.2	Resilient Back Propagation	55
	4.2.3	Majority Vote for Breast Cancer Detection	57
	4.2.4	Proposed System Versus Previous Studies	58
4.3	Case Study: Transportation Classification		58
	4.3.1	Levenberg Marquardt	59
	4.3.2	Resilient Back Propagation	59
	4.3.3	Majority Vote for Transportation Recognition	60
4.4	Summ	61	
5	CONCL	USION	62
5.0	Concl	62	
5.1	Recommendation for Future Development		63
APP		A	- 1 -

ABSTRACT

An Artificial Neural Network (ANN) system has been extensively applied to numerous data classification problems such as cloud classification, business applications (sales forecasting), and medical domain for clinical diagnosis. The most well-known ANN architecture is the Multilayer Perceptron (MLP) network which is widely used for solving problems related to data classifications. However, the conventional ANN theory selects the best MLP (after training) for classification based on one which has the least number of hidden neurons, and gives the highest percentage of correct classification when if there are other MLPs (with more number of hidden neurons) which gives the same highest percentage of correct classification. The concept may not be correct since the other MLPs may perform better when presented with new datasets. Therefore, this project intends to investigate the capability of multiple MLP system with majority voting technique. It is a system which consists of all the best-performed MLPs and a single final output from these MLPs is selected by the voting system. The work employs MATLAB Neural Network Toolbox and Borland C++ programming language as the tools to develop the proposed system. The MLP networks are trained using two types of learning algorithm, which are the Levenberg Marquardt and the Resilient Back Propagation algorithms. The performance of the multiple MLP networks are calculated based on the percentage of correct classificition. Data from two case studies; triangular waveform classification and breast cancer detection, have been used to test the performance of the developed system. The results show that the multiple MLP system with voting technique had the capability to improve the classification correctness.