STRENTHENING OF ALUMUNIUM WITH ADDITION OF NANO-SILICON CARBIDE BY USING POWDER METALLURGY METHOD

INSTITUT PENYELIDIKAN, PEMBANGUNAN DAN PENGKOMERSILAN UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

DISEDIAKAN OLEH:

RIZAL MOHAMED NOOR KHAIRUL FAUZI KARIM KAMROL AMRI MOHAMED

MEI 2006

CONTENTS

Acknowledgement	i			
Abstract	ii			
Contents	iii			
CHAPTER 1: INTRODUCTION				
1.1 Introduction to Metal Matrix Composite	1			
1.2 Objectives	2			
CHAPTER 2: LITERATURE REVIEW				
2.1 Metal Matrix Composite of Al-SiC	4			
2.2 Theory of Strengthing of composite	5			
2.2.1 Mechanisms of strengthening in metals	6			
2.2.2 Hall-Petch effect	7			
2.3 Model of strengthening mechanisms	9			
2.3.1 Nano SiC_p -Si3N ₄	9			
2.3.2 Nano SiC_p -Al ₂ O ₃	11			
2.4 Powder Metallurgy	12			
2.4.1 Blending	14			
2.4.2 Single Axial Press	15			
2.4.3 Sintering	17			
2.4.4 Hot Press	19			

2	.5 Mecha	nical Milling	20
	2.5.1	Raw Materials	20
	2.5.2	Planetary Ball Mills	21
	2.5.3	Process Variable	22
	2.5.4	Milling Speed	22
	2.5.5	Milling Time	23
	2.5.6	Ball to powder weight ratio	23
	2.5.7	Milling Atmosphere	24
	2.5.8	Process Control Agents	24
2	.6 Charac	terization Technique XRD-SEM	
	2.6.1	X-Ray Diffractometer	25
	2.6.2	2 Scanning electron microscope	26
2	.7 Mecha	nical Properties Testing- Density	
	2.7.1	Density	28
	2.7.2	Hardness	29
	2.7.3	Flexure	31

CHAPTER 3: RAW MATERIALS & METHODOLOGY

3.1	Raw Materials	33	
3.2	2 Preparation of Sample		
3.3	3 Blending Process		
3.4	Mechanical Milling		
3.5	5 Cold Press		
3.6	Sintering		
3.7	Hot Press		
3.8	Characterization Technique (XRD, SEM)	39	
	3.8.1 XRD	39	
	3.8.2 SEM	39	
3.9	Mechanical Properties Testing	40	
	3.9.1 Density	40	
	3.9.2 Hardness	41	
	3.9.3 Flexure	42	
3.10	Experimental Plan	43	

ABSTRACT

This study focuses on nano silicon carbide particulate-reinforced metal-matrix composites processing route using two different powder metallurgy techniques; cold press-sintered and hot press-vacuum. Two kinds of SiC particulates (SiC_p), whose diameters 60 pm and 50-200 nm were separately incorporated into Al-lwt% SiC and Al-3wt% SiC by mechanical milling. The microstructures of the samples were investigated by means scanning electron microscopy and correlated to their mechanical properties through hardness and three-point bending test. The experiment showed that hot press-vacuum route resulted a smaller size and amount of the pores compared to cold press-sintered, thus led to the dramatically improvement in mechanical properties which result an improvement of hardness from 105.7 Hv to 450.6 and strength from 4.7 MPa to 16.2 MPa.