UNIVERSITI TEKNOLOGI MARA

SOIL CONTAMINATION CLASSIFICATION BASED ON GROUND PENETRATING RADAR DATA USING SUPPORT VECTOR MACHINE

MOHAMAD ADIB BIN ABDULLAH

Dissertation submitted in partial fulfillment of the requirements for the degree of

Bachelor Degree of Surveying Science and Geomatics (Hons.)

Faculty of Architecture Planning and Survey

August 2020

AUTHOR'S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Mohamad Adib bin Abdullah
Student I.D. No.	:	2016490622
Programme	:	Bachelor Degree of Surveying Sciences and Geomatics (Hons.)
Faculty	:	Architecture Planning and Survey
Dissertation Title	:	Soil Contamination Classification Based on Ground Penetrating Radar Data Using Support Vector Machine
Signature of Student	:	allo.
Date	:	10 August 2020

ABSTRACT

Many of natural sources had been polluted such as water, air, sound and soil (mineral). This research is for making the classification of soil contamination with uncontaminated soil for sand and laterite type of soil. The contamination will be use is formed by hydrocarbon compound which was diesel. This research will be conducted at test bed of GPR scanning in UiTM Perlis. After the data of contaminated and uncontaminated soil are collected, the raw data need to process using Reflexw. The preprocessing of data radargram consists of move starttime, dynamic correction, and hyperbola fitting. GPR data interpretation can be use for classify the buried feature by using machine learning. In this research the classification method that will be using Support Vector Machine (SVM) classifier. The open source provided SVM function is Waikato Environment for Knowledge Analysis (Weka). The SVM classification provided a good quality of classification. All of three soil type classification produce correct instances classified above than 95%. This classification also had been compared with logistic regression classification. The root mean square of these classification provided good result all of them were below 0.05.

TABLE OF CONTENT

CONF	iv	
AUTH	v	
SUPE	vi	
ABST	vii	
ACKN	viii	
TABL	ix	
LIST OF TABLES		xii
LIST	xiii	
LIST	XV	
LIST OF ABBREVIATIONS		
CHAF	PTER ONE INTRODUCTION	17
1.1	Research Background	17
1.2	Problem Statement	18
1.3	Scope and Limitation	19
1.4	Aim and Objectives	19
1.5	Research Questions	20
1.6	Research Methodology	20
1.7	Significance of Research	22
1.8	Summary	22
CHAF	TER TWO LITERATURE REVIEW	23
2.1	Introduction	23
2.2	Soil Contamination	23
2.3	Ground Penetrating Radar Fundamental	24
2.4	Electrical Properties in GPR	26
2.4.1	Electrical Conductivity	26
2.4.2	Dielectric Constant	27
2.4.3	Magnetic Permeability	27

2.5	Data Processing				
	2.5.1 Move Startime	28			
	2.5.2 Background Removal	28			
	2.5.3 Dynamic Correction	29			
2.5.4	Gain Function	29			
2.5.5	Bandpassbutterworth	30			
2.6	Support Vector Machine	31			
2.7	Logistic Regression	33			
2.8	Summary	33			
CHA	PTER THREE RESEARCH METHODOLOGY	34			
3.1	Introduction	34			
3.2	Site Description	34			
3.3	Site Planning and Reconnaissance				
3.4	Data Collection	35			
3.5	Data Processing				
3.6	Classification Process	37			
	3.6.1 Create Data Sets Training	37			
	3.6.2 Selecting Classes and Attributes for Dataset	39			
	3.6.3 Processing in Weka Software	41			
3.7	Summary	46			
CHA	PTER FOUR RESULT AND ANALYSIS	47			
4.1	Introduction	47			
4.2	Dielectric Constant of Contaminated Soil and Non-Contaminated In				
	Different Soil	47			
4.3	The Region Determination of Contamination				
4.4	Datasets Analysis				
4.5	Support Vector Machine Classification				
4.6	Classification Accuracy Evaluation				
4.7	Summary	60			