EFFICIENCY OF ECOHERBI TM, A NATURAL HERBICIDE FOR WEED CONTROL ON JACKFRUIT FARM

NOOR FADILAH BINTI MOHD NOOR

FINAL YEAR PROJECT REPORT SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE IN AGROTECHNOLOGY (HONS.) HORTICULTURE TECHNOLOGY IN THE FACULTY OF PLANTATION AND AGROTECHNOLOGY UNIVERSITI TEKNOLOGI MARA

AUGUST 2020

DECLARATION

This Final Year Project is a partial fulfilment of the requirements for a Degree of

Bachelor of Science in Agrotechnology (Hons.) Horticulture Technology in the Faculty

of Plantation and Agrotechnology, Universiti Teknologi MARA.

It is entirely my own work and has not been submitted to any other University or higher

education institution, or for any other academic award in this University. Where use has

been made of the work of other people it has been fully acknowledged and fully

referenced.

I hereby assign all and every rights in the copyright to this Work to the Universiti

Teknologi MARA ("UiTM"), which henceforth shall be the owner of copyright in this

work and that, any reproduction or use in any form or by any means whatsoever is

prohibited without a written consent of UiTM.

Candidate's signature : fadilah.

Date

: August 2020

Name

: Noor Fadilah binti Mohd Noor

Student I.D. No

: 2017663132

i

ABSTRACT

EFFICIENCY OF ECOHERBI TM, A NATURAL HERBICIDE FOR WEED CONTROL ON JACKFRUIT FARM

Current weed control method is highly herbicide dependent with limited herbicide registered in jackfruit. This could lead to evolution of herbicide resistance in weeds plus environmental concerns. EcoHerbi TM, a by-product of methionine production through fermentation process, has herbicidal property due to high content of acetic acid. This study aims to determine the weed species composition and to examine the efficacy of EcoHerbi TM for weed control on mature jackfruit farm. The experimental plots were established in seven years-old jackfruit farm where each plot measuring 10 m² was set up. Weed density, frequency, relative frequency, relative density and important value of each plot were determined using four quadrats sized 1 m² each. Five treatments were carried out at the inter rows of jackfruit trees as follows: T1: Untreated, where weeds were not controlled by any treatments, T2: EcoHerbi TM (full rate), T3: EcoHerbi TM (half rate), T4: commercial synthetic herbicide of glufosinate at a recommended rate and T5: Acetic acid at 20% concentration (v/v). The efficacy of each treatment was assessed on three dominant weed species based on percentage of weed killed (0 to 100%) at 1, 2, 3 and 4 weeks after treatment. The results indicated that 12 broadleaved weed species and 3 grassy weed species were found in the plots. Three most dominant species were broadleaved weeds of Ageratum conyzoides, Asystasia gangetica, and grassy weed of Cynodon dactylon with respective importance values of 3516, 1639 and 2026. EcoHerbiTM had a lower weed control efficacy (p<0.05) than T5. Increasing the application rate of EcoHerbiTM from the half rate to the full rate did not improve the weed control efficacy significantly (p≥0.05). However, T2 had comparable efficacy $(p \ge 0.05)$ with T4. A. conyzoides could recover at three weeks after herbicide treatments whereas A. gangetica and C. dactylon could recover at two weeks regardless of any herbicide treatments. These results suggested that EcoHerbiTM is a natural contact herbicide which has potential to be applied as post emergence weed killer on jackfruit farm.

TABLE OF CONTENTS

		Page
DEC	CLARATION	I
ABS	STRACT	Ш
ABS	STRAK	IV
AC	\mathbf{v}	
TAI	BLE OF CONTENTS	VI
LIS	T OF FIGURES	VIII
LIS	IX	
LIS	X	
LIS	T OF SYMBOLS	XI
LIS	T OF ABBREVIATIONS	XII
CH	APTER ONE: INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	2
1.3	Objectives of Study	2
1.4	Scope of Study	2
1.5	Significant of Study	3
CH	APTER TWO: LITERATURE REVIEW	4
2.1	General information of jackfruit	4
2.2	Weed species composition in jackfruit	4
2.3	Weed management in jackfruit	5
2.	3.1 Natural mulch	7
2.	3.2 Intercropping	7
2.	3.3 Herbicide- glufosinate	8
2.	3.4 Herbicide-vinegar (Acetic acid)	11
CH	APTER THREE: MATERIAL AND METHODS	14
3.1	Site of experiment	14
3.2	Herbicide and chemicals	15

3.3	1	Method	15	
3.	.3.1	Preparation of experiment plot	15	
3.	.3.2	Determination of weed species composition	16	
3.	.3.3	Application of herbicide at jackfruit farm	16	
3.3.4		Physio-chemical properties of soil	17	
3.	.3.5	Biological properties of soil	17	
	3.3	3.5.1 Medium agar preparation	18	
	3.3	3.5.2 Determination of total bacterial count and	18	
		Actinomycetes population in soil		
3.4	I	Experimental design	19	
3.5	5	Statistical analysis	20	
3.	.5.1	Weed species composition	20	
СН	APT	ER FOUR: RESULTS AND DISCUSSION	22	
4.1	Ι	Determination of weed species composition	22	
4.2	I	Efficiency of different herbicide treatments on three selected weed species	24	
4	.2.1	Herbicide efficacy for Ageratum conyzoides	27	
4.2.2		Herbicide efficacy for Asystasia gangetica	28	
4.2.3		Herbicide efficacy for Cynodon dactylon	30	
4	.2.4	Soil pH	31	
4	.2.5	Effect of herbicide treatments on total bacterial count	32	
4	.2.6	Effect of herbicide treatments on total actinomycetes count	33	
СН	APT	ER FIVE: CONCLUSION	34	
5.1	S	Summary	34	
5.2	F	Recommendations	34	
RE	FER	ENCES	35	
AP	APPENDICES			
AU	THO	OR'S PROFILE	64	