EFFECT OF BISMUTH OXIDE ON ZINC OXIDE PROPERTIES FOR VARISTOR APPLICATIONS

SAEDAH MUNIRAH BT SANUSI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2020

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF EQUATIONS	viii
LIST OF ABBREVIATIONS	ix
ABSTRACT	xi
ABSTRAK	xii

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	3
1.3	Significance of study	4
1.4	Objectives of study	4

CHAPTER 2 LITERATURE REVIEW

ntroduction	5
Zinc oxide varistor	5
Doping agent	6
Chapter summary	10
	ntroduction Cinc oxide varistor Doping agent Chapter summary

CHAPTER 3 METHODOLOGY

3.1	Introd	luction	11
3.2	Mater	rials	11
3.3	Samp	le preparation	12
	3.3.1	Preparation of the Zinc oxide powders	12
	3.3.2	Preparation of Zinc Oxide based varistor	14
3.4	Samp	le characterization	16
	3.4.1	Scanning Electron Microscope (SEM)	16
	3.4.2	X-ray Diffraction (XRD)	18
	3.4.3	Fourier Transform Infrared (FTIR)	19
	3.4.4	UV-visible (UV-vis) spectroscopy	20

CHAPTER 4 RESULT AND DISCUSSION

Introduction	22
Structural properties of bismuth oxide doped zinc oxide varistor at	
different concentration	22
4.2.1 Scanning Electron Microscope (SEM)	22
4.2.2 X-ray Diffraction (XRD)	25
	Introduction Structural properties of bismuth oxide doped zinc oxide varistor at different concentration 4.2.1 Scanning Electron Microscope (SEM) 4.2.2 X-ray Diffraction (XRD)

	4.2.3 Fourier Transform Infrared (FTIR)	27	
4.3	4.3 Optical properties of bismuth oxide doped zinc oxide varistor at different		
	concentration	29	
	4.3.1 Absorbance spectra	29	
СНАР	TER 5 CONCLUSION AND RECOMMENDATION		
5.1	Introduction	31	
5.2	Conclusion	31	
5.3	Recommendation	32	

CITED REFERENCES	33
APPENDICES	37
CURRICULUM VITAE	40

LIST OF FIGURES

Figure	Caption	Page
3.1	Flow chart preparation of ZnO powders	13
3.2	Flow chart preparation of ZnO based varistor	15
3.3	Scanning Electron Microscope	17
3.4	Schematic diagram of SEM	17
3.5	a) X-ray Diffractometer b) Schematic diagram of XRD	18
3.6	a) Fourier Transform Infrared b) Schematic diagram of	19
	FTIR	
3.7	a) UV-Vis spectrometer b) Schematic diagram for UV vis	20
3.8	Flow chart of characterization process	21
4.1	SEM images of pure ZnO and Bi2O3 doped ZnO at various	24
	composition sintered at 1050°C	
4.2	XRD patterns of the samples with 0, 0.5, 1.0 and 1.5mol%	26
	of Bi2O3 sintered at 1050°C for 2h.	
4.3	Transmittance peak of Bi2O3 doped ZnO nanostructured at	28
	different concentration	
4.4	Absorbance peaks of the samples with 0, 0.5, 1.0 and	30
	1.5mol% 26 of Bi2O3	

ABSTRACT

EFFECT OF BISMUTH OXIDE ON ZINC OXIDE PROPERTIES FOR VARISTOR APPLICATIONS

The effect of bismuth oxide properties for varistor applications have been doped composition investigated. The Bi₂O₃ ZnO with [(100-X)%ZnO)+(X%Bi2O3)]mol% have been prepared using solid state method. The structural and morphological properties of synthesized Bi2O3-doped ZnO structures have examined. Four different composition of Bi2O3 and ZnO have been applied to the samples. All the samples were characterized using Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and UV-visible spectroscopy. The increasing of Bi2O3 concentration has led to decrease in the average grain size and crystallite size. Therefore, by varying the concentration of the dopant will influence the structural and morphological properties of Bi2O3 doped ZnO varistor and will increase the performance of varistor application. The Bi2O3 doped ZnO based varistor that have been sintered at 1050°C with 1.0mol% of Bi2O3 has obtained the smallest grain size and exhibited the most excellent varistor characteristics.