SYNTHESIS SrAi₂O₄:Eu²⁺,Dy³⁺ PHOSPHOR BY USING SOLUTION COMBUSTION METHOD

NIK NURSYUHADA BINTI NIK ROSLAN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2020

TABLE OF CONTENTS

		Page
ACKN	NOWLEDGEMENTS	iii
TABL	JE OF CONTENTS	iv
LIST	OF TABLES	vi
LIST	OF FIGURES	vii
LIST	OF ABBREVIATIONS	Х
ABST	RACT	xii
ABST	RAK	xiii
СНАТ	PTER 1 INTRODUCTION	1
11	Background of the study	1
1.1	Problem statement	2
1.3	Significant of study	2
1.4	Objectives of study	$\frac{1}{3}$
CHAI	PTER 2 LITERATURE REVIEW	4
2.1	Introduction	4
2.2	Strontium Aluminate Phosphor	4
2.3	Phosphor Production Method	14
CHAI	PTER 3 METHODOLOGY	17
3.1	Introduction	17
3.2	Materials	17
3.3	Preparation of SrAl ₂ O ₄ :Eu ²⁺ ,Dy ³⁺	18
3.4	Chemical Composition	21
3.5	Characterizations Method	22
	3.5.1 X-ray Diffraction (XRD) Spectrometer	22
	3.5.2 Fourier Transform Infrared (FTIR) Spectrometer	23
	3.5.3 Photoluminescence (PL) Spectrometer	24
	3.5.4 Ultraviolet-visible (UV-Vis) Spectrometer	25
СЦА	DTED A DESULTS AND DISCUSSION	77
	Introduction	27
т.1 4 ?	Sample Preparation	27
43	X-ray Diffraction Analysis	27
		2)

	4.3.1 Crystallite size	30
4.4	Fourier Transform Infrared Analysis	31
4.5	Photoluminescence Analysis	33
	4.5.1 Emission Spectra Eu ²⁺ doped SrAl ₂ O ₄	34
	4.5.2 Emission Spectra Dy ³⁺ doped SrAl ₂ O ₄ :Eu ²⁺	35
4.6	CIE plot of Dy ³⁺ co-doped SrAl ₂ O ₄ :Eu ²⁺	37
4.7	Ultraviolet-Visible Analysis	38
	4.7.1 Energy Band Gap	39

CHA	PTER 5 CONCLUSION AND RECOMMENDATIONS	42
5.1	Introduction	42
5.2	Conclusions	42
5.2	Recommendations	44

CITED REFERENCES	45
APPENDICES	48
CURRICULUM VITAE	57

LIST OF TABLES

Table	Caption	Page
2.1	FTIR analysis of SrAl ₂ O ₄ :Eu phosphor powder. Adapted from Bisen and Sharma (2016)	6
2.2	FTIR analysis of $SrAl_2O_4$: Er^{3+} , Yb^{3+} phosphor powder. Adapted from Kumar et al. (2015)	10
2.3	Components used for solution preparation. Adapted from Varma et al. (2016)	15
3.1	Chemical Composition (mol) for SrAl ₂ O ₄ samples	21
4.1	The crystallite size of $SrAl_2O_4$ phosphor before and after calcination	31
4.2	The crystallite size of SrAl ₂ O ₄ phosphor with different doping concentrations	31
4.3	FTIR analysis of $SrAl_2O_4$, $SrAl_2O_4$: 1% Eu and $SrAl_2O_4$: 1% Eu, 1% Dy^{3+} phosphor powder	32

ABSTRACT

SYNTHESIS SrAl₂O₄:Eu²⁺,Dy³⁺ PHOSPHOR BY USING SOLUTION COMBUSTION METHOD

Strontium aluminate doped with Eu^{2+} and Dy^{3+} were prepared by using solution combustion method. To synthesize $SrAl_2O_4 : Eu^{2+}$, Dy^{3+} phosphor, $Sr(NO_3)_2$ and $Al(NO_3)_3.9H_2O$ were used as starting material while Eu_2O_3 and Dy_2O_3 were used as activator. The fuel used for combustion process was urea (CH₄N₂O). The structural properties were measured by using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The structure of the $SrAl_2O_4:Eu^{2+},Dy^{3+}$ was found to be monoclinic with space group P2₁ with crystallite size around 22.43 nm. Based on FTIR, the functional group including vibrational and bending modes exist in sample were identified. The optical properties of $SrAl_2O_4:Eu^{2+},Dy^{3+}$ were studied by using photoluminescence (PL) and Ultraviolet-Visible (UV-Vis). $SrAl_2O_4$: Eu^{2+},Dy^{3+} emits green light when the peak is at 522 nm and confirmed with CIE. $SrAl_2O_4:Eu^{2+},Dy^{3+}$ has around 5.3865 eV direct energy band gap based on UV-Vis analysis. This nanophosphor is very useful in industry since it has afterglow effect.