PHYSICAL AND OPTICAL ANALYSIS OF CERIUM DOPED TELLURITE GLASS EMBEDDED WITH COPPER NANOPARTICLES

AMIRA SYUHADAH BINTI ABD. RAZAK

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2020

TABLE OF CONTENTS

		Page
DEDI	ICATIONS	iii
	NOWLEDGEMENTS	v
	LE OF CONTENTS	vi
	OF TABLES	viii
	OF FIGURES	ix
	OF ABBREVIATIONS	xi
	OF SYMBOLS	xii
LIST	OF APPENDICES	xiii
ABST	TRACT	xiv
ABST	TRAK	xv
СНА	PTER 1 INTRODUCTION	1
1.1	Background of Study	1
1.2	Problem Statements	3
1.3	Research Objectives	5
1.4	Scope of Study	
1.5	Significance of the Study	7
CHA	PTER 2 LITERATURE REVIEW	8
2.1	Introduction	8
2.2	Theory of the Glass	8
	2.2.1 Definition of the Glass	8
2.3	Glass Network	10
	2.3.1 Network former	10
	2.3.2 Network Modifier	11
	2.3.3 Intermediate	11
2.4	Tellurite Glass Structure	12
2.5	Rare Earth Doped Tellurite Glass	13
2.6	Copper Nanoparticles	14
2.7	Surface Plasmon Resonance	16
2.8	X-Ray Diffraction (XRD)	17
2.9	Physical Properties	
	2.9.1 Density and Molar Volume	18
	2.9.2 Oxygen Packing Density (OPD)	19
2.10	Optical Properties	
	2.10.1 UV-Vis-NIR Spectroscopy	
	2.10.2 Luminescence	22

CHA	APTER 3 RESEARCH METHODOLOGY	23	
3.1	Introduction	23	
3.2	Glass Composition		
3.3			
3.4	Sample Preparation	26	
	3.4.1 Flowchart of Glass Preparations	26	
3.5	X-ray Diffraction (XRD)	27	
3.6	Physical Properties	28	
	3.6.1 Glass Density	28	
3.7	Optical Properties	29	
	3.7.1 Ultraviolet Visible Infrared Spectroscopy (UV-Vis-NIR)		
	Spectroscopy	29	
	3.7.2 Photoluminescence Spectroscopy (PL)	30	
CUA	APTER 4 RESULTS AND DISCUSSION	32	
4.1	Introduction		
4.2	Prepared Glass Samples		
4.3	X-Ray Spectra		
4.4	Physical Properties		
4.5	UV-Vis-NIR Spectroscopy and Band Gap Energy		
4.6	Surface Plasmon Resonance (SPR)		
4.7	Photoluminescence Spectroscopy		
4 . /	Thotorumnescence Spectroscopy	40	
	APTER 5 CONCLUSION AND RECOMMENDATIONS	50	
5.1	Introduction		
5.2	Research Outcomes		
5.3	Future Works	52	
REF	ERENCES	53	
	ENDIX A	56	
	ENDIX B	57	
	ENDIX C	58	
APPENDIX D CURRICULUM VITAE			

LIST OF TABLES

Table	Caption	Page
2.1	The composition including copper nanoparticles in previous research.	16
3.1	The composition of mol % of $(85-x)$ TeO ₂ – 3MgO – $2\text{Li}_2\text{CO}_3$ – $10\text{Na}_2\text{O}$ – (x) CeO ₂ , where $(0 \le x \le 2.0 \text{ mol}$ %).	24
3.2	The composition of mol % of (84– y) TeO ₂ – 3MgO – $2\text{Li}_2\text{CO}_3$ – $10\text{Na}_2\text{O}$ – 1CeO_2 – (y) CuO, where (0.25 \leq y \leq 1.0 mol %).	24
3.3	The composition of mol % of 84TeO ₂ – 3MgO – 2Li ₂ CO ₃ – 10Na ₂ O – 1CuO of Surface Plasmon Resonance (SPR).	24
4.1 4.2	Glass series and their appearance. The density (ρ), molar volume (Vm), oxygen packing density (OPD), indirect energy band gap (Eg) and Urbach	33
1.2	energy (ΔE) of the different concentration of Ce^{3+} ions glass.	
4.3	The density (ρ), molar volume (Vm), oxygen packing density (OPD), indirect energy band gap (Eg) and Urbach energy (Δ E) of the different concentration of CuO glass.	36

ABSTRACT

Two series of glasses with composition of (85 - x) TeO₂ - 3MgO - 2Li₂CO₃ - $10\text{Na}_2\text{O} - (x)\text{ CeO}_2$ where $0.0 \le x \le 2.0 \text{ mol } \%$ and $(84 - y)\text{ TeO}_2 - 3\text{MgO} - 2\text{Li}_2\text{CO}_3$ $-10\text{Na}_2\text{O} - 1.0\text{CeO}_2 - (y)$ CuO where $0.25 \le y \le 1.0$ mol % glasses system have been studied. The samples were prepared by using conventional melt quenching techniques. The amorphous nature of glass is determined by using X-Ray Diffraction (XRD). The physical properties are measured in terms of density, molar volume and ionic packing density (OPD). Meanwhile the optical analysis is analysed by using the ultraviolet-visible-near infrared (UV-Vis-NIR) and photoluminescence (PL) spectroscopy, respectively. It is found that all glasses are amorphous in nature. The glass density and molar volume with different concentration of CeO₂ are found in the range of (4.637 - 4.935) g cm⁻³ and (29.525 - 31.068) cm³ mol⁻¹, respectively. Whereas, the density and molar volume of the glass containing CuO NPs are found in the range of (4.79 – 4.93) g cm⁻³ and (29.23) - 30.04) cm³ mol⁻¹ respectively. Meanwhile, UV- Vis - NIR absorption spectra shows absorption peaks centered at 356nm, 418nm and 667nm for series 1, meanwhile peaks centered at 357nm, 412nm and 720nm for series 2. The optical band gap for series 1 and series 2 glasses found ranging from 1.92 eV to 2.74 eV and from 1.71 eV to 2.29 eV respectively. Meanwhile, the Urbach energy was found varies from 1.92 eV to 2.43 eV for glass containing CeO₂ and whereas for glass containing Cu NPs ranging from 1.94 eV to 2.02 eV. The SPR revealed located at 800nm of UV-Vis spectra. Luminescence spectra under 356nm excitations between $5d \rightarrow {}^4F_1$ levels of Ce^{3+} ions revealed five peaks of emission bands of cerium doped glass which are centered at 475nm, 520nm, 550nm, 560nm and 660nm. Meanwhile glass containing CuO NPs centered at 460nm, 520nm, 550nm, 565nm and 660nm.