PHOTOCATALYTIC STUDIES OF ZINC OXIDE (ZnO) / NICKEL (Ni) / GRAPHENE OXIDE (GO) NANOCOMPOSITE FOR THE DEGRADATION OF METHYL ORANGE DYE UNDER ULTRAVIOLET (UV) LIGHT IRRADIATION

MUHAMMAD SYAHMI BIN BASIR

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2020

TABLE OF CONTENTS

		Page
ACKNOWLEDGEMENT TABLE OF CONTENT LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS		iii iv vi vii ix
ABST	TRACT	xi
	PTER 1 INTRODUCTION	1
1.1	Background of the study	1
1.2	Problem statement	4
1.3	6	5
1.4	Objective of study	5
CUA	PTER 2 LITERATURE REVIEW	6
2.1	Basic Principle of Photocatalysis	6 6
2.1	ZnO as a photocatalyst	0 7
2.2	Mechanism of Photocatalysis	, 9
2.4	Nickel as Co-Dopant	12
2.5	Graphene Oxide (GO)	12
2.6	Recyclability and Photostability of Photocatalyst	15
	PTER 3 METHODOLOGY	16
3.1	Introduction	16
3.2	Materials	18
3.3	Apparatus	19
3.4	Preparation of Methyl Orange (MO) Dye Solution as Dye Representative	Pollution 23
3.5	Photocatalytic Degradation Measurement	23
3.6	Recyclability aand Photostability of Photocatalyst	24
	PTER 4 RESULTS AND DISCUSSION	25
4.1	Photocatalytic Activity	25
4.2	Photocatalytic Stability Test	36

LIST OF TABLES

Tables	Caption	Page
Table 3.1	List of Materials	18
Table 3.2	List of Apparatus	19
Table 4.1	Absorption of Ultraviolet Light of Photocatalyst	27
Table 4.2	Percentage of Degradation of Methyl Orange (MO)	30
Table 4.3	Photodegradation Rate Contestant of Photocatalyst	34

LIST OF FIGURES

Figures	Caption	Page
Figure 2.1	Wurtzite and Zinc Blende ZnO Structure	7
Figure 2.2	Heterogeneous Photocatalysis Oxidation Steps	10
Figure 2.3	Schematic Diagram the Production of Oxidative Agents by	10
	Pure ZnO	
Figure 2.4	Mechanism degradation by co-dopant-ZnO system	13
Figure 3.1	Flow Chart of the Overall Methodology	17
Figure 3.2	Schematic Diagram of the Photocatalytic Degradation under	22
	Irradiation of UV Light	
Figure 4.1	Time dependent absorption UV light of MO solution	26
Figure 4.2	The percentage degradation curve of MO under UV light in	29
	the presence of photocatalyst	
Figure 4.3	The curves of $\ln (C_t/C_0)$ versus time for photodegradation	32
	of MO using photocatalyst	
Figure 4.4	Recyclability of the ZnO/Ni/GO _{0.4g} Composite in the	34
	Photodegradation of MO under irradiation ultraviolet light	

ABSTRACT

PHOTOCATALYTIC STUDIES OF ZINC OXIDE (ZNO) / NICKEL (NI) / GRAPHENE OXIDE (GO) NANOCOMPOSITE FOR THE DEGRADATION OF METHYL ORANGE DYE UNDER ULTRAVIOLET (UV) LIGHT IRRADIATION

Recently, ZnO was received more attention as promising photocatalyst for the treatment of dyes an organic pollutant. However, rapid recombination of photogenerated electron hole pairs is the one of major limitation of ZnO that can be influenced on the photocatalytic activity efficiency. In this study, modification of ZnO by co-doped with nickel (Ni) and graphene oxide (GO) at variation weight of 0.1 to 0.4 g can increase the efficiency of photocatalytic activity. The evaluation of photocatalytic activity has been done using methyl orange dye at concentration of 10mg /L under UV light irradiation. Moreover, recyclability of the highest efficiency photocatalyst also has been tested. Results indicate that ZnO / Ni / GO_{0.4g} photocatalyst exhibits the highest percentage of photodegradation of 74.06 % and photodegradation rate constant, k of 0.0201 min⁻¹ for degradation of methyl orange for 60 min under UV irradiation. The present of GO as co-doped to ZnO described the contribution for enhancement of photocatalytic activity due to increasing of photogenerated electron-hole pair period during photocatalysis process. Also, this photocatalyst also can maintain 59.60 % of percentage photodegradation after five cycles in the recyclability test due to great photostability.