STRUCTURE AND ELECTRONIC PROPERTIES OF CALCIUM DOPED YBCO-247 SUPERCONDUCTOR VIA DENSITY FUNCTIONAL THEORY

MOHD. SHAFIQ AFNAN BIN ALI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2020

TABLE OF CONTENTS

Page

CHAPTER 1 INTRODUCTION		
1.1	Background and problem statement of study	6
1.2	Significant of study	8
1.3	Objectives of study	9
CHA	PTER 2 LITERATURE REVIEW	10
2.1	Density Functional Theory (DFT)	10
2.2	YBCO Superconductors.	12
2.3	Critical Temperature, T_c	12
2.4	Critical current density J_c	13
2.5	Crystal Structure	14
2.6	Doping	17
2.7	Cu-site of YBCO system	17
2.8	Energy band gap and Fermi energy	18
2.9	Density of state (DOS)	19
СНА	21	
3.1	Atom coordinates	21
3.2	Apparatus	22
3.3	Building crystal structure using Material Studio	22
3.4	Model Refinement using CASTEP	23
3.5	Calculation and analysis using CASTEP	23
СНА	PTER 4 RESULTS AND DISCUSSIONS	28
4.1	Crystal Structure	28
	4.1.1 Optimized Structure	28
	4.1.2 Lattice Parameter	30
4.2	Energy band structure	31
4.3	Density of States	36
4.4	Electron Density Distributions	43

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 49

LIST OF FIGURES

Figure	Caption	Page
2.1	Crystal structure of Y-124 phase (left) and Y-247 phase (H.Schwer et al., 1994)	15
2.2	Energy band structure and Fermi level of LiNbO3 using CASTEP (Guo et al., 2014)	18
2.3	DOS of oxide semiconductor (Guo et al., 2014).	19
3.1	Build crystal option	22
3.2	Step 1-Geometry Optimization	23
3.3	Step 2 - Calculation to obtain the band structure, Density of states and the electron density of the system.	24
3.4	Step 3 - Calculation to obtain the band structure, Density of states and the electron density of the system.	24
3.5	Step 4 - Analyzing and importing data for band structure	25
3.6	Step 5 - Analyzing and importing data for electron density	25
3.7	Step 6 - Analyzing and importing data for density of states	26
3.8	Step 7 – Doping Calcium into Y-site and Cu-site	26
4.1	Crystal structure of Y-247 phase	29
4.2	Optimized structure of Y-247 phase.	29
4.3	Energy band diagram of Ca-doping in Y-site	34
4.4	Energy band diagram of Ca-doping in Cu-site	35
4.5	(a) PDOS of O 2p (b) Cu 3d orbital with dopant concentration of $x=0.02$, 0.04, 0.06, 0.08, and 0.10 on Y-site	39
4.6	(a) PDOS of O 2p (b) Cu 3d orbital with dopant concentration of $x=0.02$, 0.04, 0.06, 0.08, and 0.10 on Cu-site	41
4.7	(a) DOS of Ca-doping into Y-site (b) DOS of Ca-doping into Cu-site with dopant concentration x=0.02, 0.04, 0.06, 0.08, 0.10	42
4.8	Electron density distribution of calcium doping on Y-site.	46
4.9	Electron density distribution of calcium doping on Cu-site.	48

ABSTRACT

The effect of doping calcium to Y-247 superconductor was studied via Density Functional Theory through the electron density of a material at ground state due to Hohenberg-Kohn and Kohn-Sham theorem respectively. Calcium was used as a dopant to substitute Cu^{2+} and Y^{3+} that possibly increases the hole concentration. It was found that direct substitution into the Cu-site of cuprate superconductors will directly affect its properties. Density Functional Theory (DFT) calculation was used as the simulation platform to calculate the energy band gap, density of states and the electron density of the Y-247 phase. The structure retains it orthorhombicity when doped at both side but decreases the lattice parameter c. An increase in energy band gap above the Fermi level can be seen as the concentration increase from x=0.02, x=0.04, x=0.06, x=0.08 to x=0.10 for Ca-doping into Y-site of the system. Ca-doping into Cu-site shows a decrease in the energy band gap when the value of dopant increases. Doping Ca into Y-site shows an increase in the density of state with value x=0.02 and x=0.04 but started to decrease at x=0.06. In Cu-site, doping concentration of x=0.04 shows the highest at partial density of state of oxygen 2porbital. The electron density distribution show a steady distribution along CuO chain and CuO_2 plane which shows high probability of electron existence which proves the superconducting properties at the CuO₂ plane and CuO chains respectively as the charge carriers.

CHAPTER 1

INTRODUCTION

1.1 Background and problem statement of study

Since the discovery of high T_c superconductors, these type of superconductors have been extensively studied by researchers. Superconductors are materials that transport electrons into another atom without resistance. This phenomena was obtained by cooling the material to a certain critical temperature, Tc. In 1911, this phenomena was discovered by Heike Kamerlingh Onnes by studying the superconductivity in mercury. The studies of superconductors are very important due to its zero resistance properties. This shows that there are no energy loss when the material becomes a superconductor. High T_c superconductor was identified by observing material that exhibit basic properties such as zero resistance, Meissner effect and pairing of quasi-particle with charge 2e (Singh & Kumar, 2018).

Superconductor were classified into two categories which is Low Temperature Superconductor (Type-I Superconductor) and High Temperature Superconductor(Type-II Superconductor). Early discovery of high T_c superconductors such as (LaBa)₂CuO₄ with T_c of 40K and YBa₂Cu₃O₇ with T_c of 95K have encourage researchers to study other oxide superconductor with