BATCH ADSORPTION PROCESS OF DYE USING COAL FIRED BOTTOM ASH

INSTITUT PENGURUSAN PENYELIDIKAN UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

DISEDIAKAN OLEH:

HAWAIAH IMAM MAAROF NORHASLINDA NASUHA HAMIZURA HASSAN

DISEMBER 2010

Tarikh : 22 Disember 2010

No. Fail Projek : 600-UiTMPP (URDC:5/2/266)

Penolong Naib Canselor (Penyelidikan) Institut Pengurusan Penyelidikan (RMI) UiTM, Shah Alam

Tuan,

LAPORAN AKHIR PENYELIDIKAN 'BATCH ADSORPTION PROCESS OF DYE USING COAL FIRED BOTTOM ASH'

Merujuk kepada perkara di atas, bersama-sama ini disertakan 4 (empat) naskah Laporan Akhir Penyelidikan beserta 1 (satu) CD bertajuk 'Batch Adsorption Process of Dye Using Coal Fired Bottom Ash' oleh kumpulan Penyelidik dari Fakulti Kejuruteraan Kimia untuk makluman pihak tuan.

Sekian, terima kasih.

Yang benar,

HAWAIAH IMAM MAAROF

Ketua U

Projek Penyelidikan

TABLE OF CONTENTS

		Page	
ACK	i		
TABLE OF CONTENTS			
LIST	iv		
LIST	V		
LIST	vi		
LIST	vii		
ABS	viii		
СНА	PTER ONE : INTRODUCTION		
1.1	Water pollution	1	
1.2	Wastewater treatment technology	3	
1.3	Problem statement	4	
1.4	Research objectives	5	
1.5	Research scope	5	
СНА	PTER TWO : LITERATURE REVIEWS		
2.1	Textile wastewater	6	
2.2	Dye removal method	7	
2.3	Theory of adsorption process	10	
2.4	Operating parameters of adsorption process	13	
	2.4.1 Nature of the adsorbate	13	
	2.4.2 Effect of adsorption condition	14	
	2.4.3 Characteristic of the adsorbent	17	
2.5	Pretreatment of low-cost adsorbent	18	
2.6	Adsorption isotherm		
	2.6.1 Langmuir isotherm	21	
	2.6.2 Freundlich isotherm	22	

CHAPTER THREE: EXPERIMENTAL

3.1	Materials and chemicals		24
	3.1.1	Materials	24
	3.1.2	Chemicals	24
3.2	Descrip	25	
	3.2.1	Equilibrium and kinetic studies in batch system	25
	3.2.2	Analysis system	25
3.3	Experin	26	
	3.3.1 F	Pretreatment of bottom ash	26
	3.3.2 E	Batch adsorption system	27
3.4	Charact	terization of adsorbents	28
CHA	APTER FO	UR : RESULTS AND DISCUSSION	
4.1	Charact	teristic of coal fired bottom ash (BA)	29
4.2	Pretreat	ted of bottom ash (BA)	30
4.3	Effect of	f initial concentrations	31
4.4	Adsorption equilibrium		
4.5	Adsorpt	34	
СНА	PTER FIVE	E : CONCLUSIONS AND RECOMMENDATIONS	
5.1	Conclus	ions	38
5.2	Recomm	nendations	39
REF	ERENCES		40
	ENDICES		40
Appendix A		Calibration curves of methylene blue (MB)	45
Annendix B		Letter	46

ABSTRACT

Batch adsorption study of methylene blue (MB) from aqueous solution was performed to evaluate the feasibility of coal fired bottom ash (BA) as an adsorbent. The initial concentration of MB was varied between 20 - 500 mg/L while the adsorbent dosage and the volume of MB solution were fixed at 5 g and 200 mL, respectively. The initial and final concentration of MB was analyzed using the UV-Vis spectrophotometer (Perkin Elmer, Lambda 25) at maximum wavelength of 664 nm. At equilibrium stage, the maximum percentage removal of MB was about 99.3% for initial MB concentration of 20 ppm. It can be observed that the percentage removal of MB increased as the initial concentration of MB increases. In addition, the equilibrium adsorption result was found to give good agreement with Langmuir isotherm. It was also observed that the adsorptive characteristic of bottom ash was enhanced by the acid-based activation. The maximum adsorption capacity of HCI-treated BA for removal of MB was 14.93 mg/g, which was four times higher than the adsorption capacity of untreated BA. Therefore this results show that BA is an attractive alternative to be utilized as adsorbent for removal of dye.

Keywords: bottom ash, adsorption, methylene blue