A COMPARISON BETWEEN λμ B-SPLINE, CUBIC TRIGONOMETRIC BEZIER AND QUASI-QUINTIC TRIGONOMETRIC BEZIER

NUR SYAFIQAH BINTI NOR AZIZAM NOOR ADZLEEN BINTI ARSAD

Thesis submitted in fulfillment of the Requirement for Bachelor Science (Hons.) Computational Mathematics in the Faculty of Computer and Mathematical Sciences Universiti Teknologi Mara

July 2019

DECLARATION BY CANDIDATE

We hereby declare that this report is the product of our original work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledge in accordance with the standard referring practices of the discipline

NUR SYAFIQAH BINTI NOOR AZIZAM 2016299276

11 JULY 2019

NOOR ADZLEEN BINTI ARSAD

2016299234

11 JULY 2019

ABSTRACT

In dealing with curves and surface of shapes, Computer-Aided Geometric Design (CAGD) is an application used widely in numerous fields such as medical, automotive, aerospace and shipbuilding. B-Spline and Bezier are methods, which play major roles in developing these curves in CAGD weather for two-dimensional shape or three-dimensional shape. Lately, few researches that come out with numerous methods of Bezier and B-Spline with multiple shapes parameter have been found. With multiple shape parameters, it gives a local control on the shape curve and flexibility in adjusting the behavior of the shapes compare to single shape parameters. Hence, in this research, $\lambda \mu$ B-Spline curve, cubic trigonometric Bezier curve and quasi-quintic trigonometric Bezier curve with two shape parameters λ and μ are present in designing two-dimensional shapes to show the differences between all the methods. Therefore, designers can see clearly the differences and have the best method in generating curves. A comparison between these three methods are made from a few aspects such as shape parameters behavior, generation of curves and control points. The control polygon is kept unchanged while the modification of the shape parameters is made on different shape of curves time by time. The behavior of each shape are observe. The observation shows that $\lambda \mu$ B-Spline of $\lambda = 1$ and $\mu = 1$ is the best method to apply in designing two-dimensional shapes as it give more advantages compared to the other two methods, cubic trigonometric Bezier and quasi-quintic trigonometric Bezier. From all the comparisons that have been made, a designing tool with altering shapes parameter function are generate.

TABLE OF CONTENT

DECALARATION BY SUPERVISOR	i
DECLARATION BY CANDIDATE	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
LIST OF TABLE	vii
LIST OF FIGURE	ix
LIST OF ABREVIATION AND SYMBOL	xiii
CHAPTER 1: INTRODUCTION TO RESEARCH	1
1.1 Introduction	1
1.2 Background of the Study	1
1.3 Problem Statement	4
1.4 Objectives	5
1.5 Significant of the Project	5
1.6 Scope of Project	6
1.7 Project Benefit	8
1.8 Organisation of Project	8
CHAPTER 2: LITERATURE REVIEW AND METHODOLOGY	10
2.1 Introduction	10
2.2 Definition of Terms and Concept	10
2.3 Literature Review	11
2.4 Methodology	14

v

2.4.1 Generation of Basis	15
2.4.1.1 Basis of $\lambda\mu$ B-Spline	15
2.4.1.2 Basis of Cubic Trigonometric Bezier	16
2.4.1.3 Basis of Quasi-quintic Trigonometric Bezier	18
2.4.2 The Shape Parameters Behaviour	19
2.4.2.1 The Shape Parameters Modification of $\lambda\mu$	
B-Spline	19
2.4.2.2 The Shape Parameters Modification of Cubic	
Trigonometric Bezier	21
2.4.2.3 The Shape Parameters Modification of Quasi-	
quintic Trigonometric Bezier	23
2.4.3 Curve Behaviour	26
2.5 Conclusion	32
CHAPTER 3: IMPLEMENTATION	33
3.1 Introduction	33
3.2 Research Data	33
3.3 Research Steps	34
3.4 Conclusion	69
CHAPTER 4: RESULTS AND DISCUSSION	70
4.1 Introduction	70
4.2 Discussion of the result	70
4.2.1 Result for two dimensional shapes	71
4.2.2 Result for shape parameters modification	79