COMPARISON OF CONJUGATE GRADIENT METHODS FOR DEVELOPING THE MULTIPLE LINEAR REGRESSION MODEL FOR RICE PRODUCTION IN MALAYSIA.

NUR ATIKAH BINTI MUSTAPHA

Thesis Submitted in Fulfilment of the Requirement for Bachelor of science (hons.) Computational Mathematics in the Faculty of Computational and Mathematics Sciences University Technology Mara

2018

DECLARATION BY CANDIDATE

I certify that this report and the project to which it refers the production of my own and that idea or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of discipline.

Signature:

Name Candidates: NUR ATIKAH BINTI MUSTAPHA

Matric No: 2015299192

June 11, 2018

1000

ABSTRACT

Linear regression is one of the basic model in statistics and it is also categorized an unconstrained optimization problem. It is used to determine the relationship between dependent and independent variables. This project focuses on the formation of regression models for the rice production in Malaysia by analyzing the effects of paddy population, planted area, human population and domestic consumption. The conjugate gradient method is used to solve the regression function through normal equation in matrix form. The conjugate gradient is chosen due to its ability to generate a solution for regression model and obtain the coefficient value of independent variables. The beta parameter from general conjugate equation is varied using four existing formula. The conjugate method is then compared with the result obtained from direct method and SPSS software. From the comparison, the conjugate gradient method with beta FR (Fletcher and Reeves) shows the least absolute error and declared as the best regression model for the rice production statistic.

TABLE OF CONTENTS

DECLARATION BY SUPERVISOR	i
DECLARATION BY CANDIDATE	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	ix
LIST OF TABLES	x
LIST OF ABBREVIATIONS AND SYMBOLS	xi

CHAPTER 1 INTRODUCTION OF RESEARCH

1.1 Introduction	1
1.2 Background of study	1
1.3 Problem Statement	6
1.4 Objectives	7
1.5 Significant of Research	8
1.6 Scope of Research	8
1.7 Definition of Terms and Concepts	8

CHAPTER 2 LITERATURE REVIEW AND METHODOLOGY

2.1 Introduction	11
2.2 Literature Review	11
2.2.1 Multiple Linear Regressions	11

2.2.2 Inverse Method	12
2.2.3 Conjugate Gradient	12
2.2.4 Case Study: Rice Production	14
2.2.4.1 Introduction	15
2.2.4.2 Determinants Of Rice Productions.	15
2.2.4.2.1 Paddy Productions.	15
2.2.4.2.2 Planted Area.	16
2.2.4.2.3 Human Population	17
2.2.4.2.4 Domestic Consumption	17
2.3 Research Methodology	19
2.3.1 Phase 1: Preliminary study	19
2.3.1.1 Step 1: Data collection	19
2.3.1.2 Step 2: OLS Regressions Model	20
2.3.1.2.1 Step 2a	20
2.3.1.2.1 Step 2b	20
2.3.2 Phase 2: Comparison of Conjugate Gradient	20
2.3.2.1 Step 3: Matrix using Inverse	21
2.3.2.2 Step 4: Conjugate Gradient	22
2.3.2.3 Step 5: Data Analysis	22
2.3.2.4 Step 6: Conclusion	23
2.4 Conclusion	24

CHAPTER 3 IMPLEMENTATION

3.1 Introduction	25
3.2 Sample Data	25
3.3.1 Ordinary Least Square Regression	29
3.3.2 Enter Data	30