REVIEW ON THE PRODUCTION OF BIOHYDROGEN USING GREEN ALGAE CHLAMYDOMONAS REINHARDTII BY BIOPHOTOLYSIS

DANIAL AZIM BIN CHE AZIZ

FACULTY OF CHEMICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA JOHOR PASIR GUDANG CAMPUS

APRIL 2015

ACKNOWLEDGEMENT

First and foremost, I would like to thank my parents, Che Aziz Ali and Normah Dolah for their unending attention and care for me. Without their support I would have not be able to be the person I am today. Also, I would like to express my appreciation towards my close friends for being a great morale support throughout my time in UiTM. Not forgetting my project supervisor, Miss Salmi for giving her output and opinions in helping me finish this thesis. Her dedication and profound guidance have been a major contribution. Moreover, I am very grateful to my project teammates and classmates for sharing their insights and thoughts on how I should complete the report. Last but not least I would like to thank all the lecturers that I have had the honour of taking guidance from. Their knowledge and teachings hopefully shall stay and be of use to me for the rest of my life.

ABSTRACT

The purpose of this study is to review the parameters affecting H_2 production by green algae through biophotolysis. The parameters investigated were the photobiorector, light intensities, pH and nutrients deprivation. The utilisation of Sartorius photobioreactor allowed a more flexible and easy control of process parameters. The intensities of light during pre-growth and H_2 production phase plays a major role in the net total H_2 produced. The optimum pH for hydrogen production by biophotolysis of green algae is found to be at 7.7. New studies on nutrient deprivation has shown the ability to significantly increase H_2 production, especially under potassium deprived conditions.

TABLE OF CONTENTS

PA	GE
----	----

DECLARATION			11	
CERTIFICATION			111	
ABSTRACT			V1	
TABLE OF CONTENTS			V11	
LIST OF TABLES				
LIST OF FIGURES				
LIST OF ABBREVIATIONS				
LIST OF SYMBOLS			X11	
CHAPTER 1	INT	RODUCTION		
	1.1	Research Background	1	
	1.2	Problem Statement	2	
	1.3	Objectives of Researches	3	
	1.4	Scopes of Researches	3	
CHAPTER 2	LIT	ERATURE REVIEW		
	2.1	Introduction	4	
	2.2	Current Commercial Methods of Hydrogen Production	6	
		2.2.1 Hydrogen Production through Electrolysis	6	

		2.2.2	Hydrogen Production through Steam Reforming	7
	2.3	Biohyd	9	
		2.3.1	Introduction	9
		2.3.2	Production of Biohydrogen from green Algae	12
		2.3.3	Production of Biohydrogen from Bacteria	13
	2.4	Algae		14
		2.4.1	Definition	15
		2.4.2	Characteristics	15
	2.5	Green	Algae (Chlamydomonas Reinhardtii)	16
		2.5.1	Characteristic of C. reinhardtii	16
		2.5.2	Growth of <i>C. reinhardtii</i>	17
	2.6	Algae as Energy Source		18
		2.6.1	Algae for Ethanol	18
	2.6.2	Algae for Biofuel	19	
	2.6.3	Algae for Hydrogen	23	
	2.7	Photos	synthetic Biohydrogen Production	24
		2.7.1	Biophotolysis	24
		2.7.2	Photofermentation	28
CHAPTER 3	ME	IETHODOLOGY		31
3.1 Culture Growth				31