THE EFFICIENCY OF CONJUGATE GRADIENT METHODS WITH GLOBAL CONVERGENCE

SITI NUR HAFIZA BINTI SHAMSUDIN

Thesis Submitted in Fulfillment of the Requirement for Bachelor of Science (Hons.) Computational Mathematics in the Faculty of Computer and Mathematical Sciences Universiti Teknologi Mara

January 2019

DECLARATION BY CANDIDATE

I certify that this report and the project to which it refers is the product of my own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practice of the discipline.

SITI NUR HAFIZA BINTI SHAMSUDIN

2016299376

16 DECEMBER 2018

ABSTRACT

Conjugate gradient methods are usually used to solve any problem that related to large number of variables such as a large linear system of equations. Different conjugate gradient algorithms correspond to different choices for the scalar parameter β_k (Andrei, N. (2013). A simple three-term conjugate gradient algorithm for unconstrained optimization. *Journal of Computational and Applied Mathematics*, 241, 19-29.). However, if objectif function is linear function, then no different between CG method because it just produce the same results but when applied to general nonlinear functions, often the parameter β_k is computed using some other formulae which do not satisfy the conjugacy condition. Therefore, this study is conducted to compare the efficiency of CG methods base on the number of iteration and CPU time. The global convergence result is established using exact line searches. Numerical result shows that algorithm 2 which is one of the proposed CG methods is more efficiency when compared to other algorithms.

TABLE OF CONTENTS

DECLARATION BY THE SUPERVISORS		
DECLARATION BY CANDIDATE		
ABSTRACT	iii	
ACKNOWLEDGEMENT		
TABLE OF CONTENT		
LIST OF TABLES		
LIST OF FIGURES		
LIST OF ABBREVIATIONS AND SYMBOLS		
LIST OF ALGORITHMS		
1. INTRODUCTION OF RESEARCH	1	
1.1 Introduction	1	
1.2 Background of study	1	
1.3 Problem statement	6	
1.4 Objectives	7	
1.5 Significance of project	7	
1.6 Scope of project	7	

1.7 Project benefit	8
1.8 Organization of project	8

2.	LITERATURE REVIEW AND METHODOLOGY	10
	2.1 Introduction	10

	2.2 Definition of term and concepts	10
	2.3 Literature review	12
	2.4 Research step	20
	2.5 Conclusion	24
3.	IMPLEMENTATION	25
	3.1 Introduction	25
	3.2 Fundamental of conjugate gradient method	25
	3.2.1 Conjugate gradient methods	25
	3.2.2 General algorithm of CG methods	26
	3.3 Calculation example	29
	3.4 Implementation for initial points inside and outside global minima	36
	3.5 Conclusion	37
4.	RESULTS AND DISCUSION	38
	4.1 Introduction	38
	4.2 Numerical results for camel function –six hump	38
	4.3 Numerical results for extended rosenbrock function	40
	4.4 Numerical results for implementation for initial points inside and	43
	outside global minima	
	4.5 Performance profile	52
	4.6 Contour analysis	59
	4.7 Conclusion	69
5.	CONCLUSION AND RECOMMENDATIONS	70