THREE-DIMENSIONAL HOMOGENEOUS HEAT EQUATION IN RECTANGULAR COORDINATES

NORAFIFI NAJWA BINTI WIRA

Thesis Submitted in Fulfillment of the Requirement for Bachelor of Science (Hons.) Computational Mathematics in the Faculty of Computer and Mathematical Sciences Universiti Teknologi Mara

July 2017

DECLARATION BY CANDIDATE

I certify that this report and the project to which it refers is the product of my own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

NORAFIFI NAJWA BINTI WIRA

2014831294

JULY 23,2017

ABSTRACT

Heat equation is a parabolic partial differential equation that describes the variation of temperature with respect to time over a given region. Generally, heat transfer through a medium in three-dimensional. This project deals with the derivation of three-dimensional homogeneous heat equation in rectangular coordinates with different boundary conditions. In addition, Fourier series is also used to find the coefficients in order to obtain solution of heat equation. Therefore, the solution of homogeneous heat equation in solid cuboid can be obtained using the separation of variables method.

TABLE OF CONTENTS

DECLARATION BY SUPERVISOR	ii
DECLARATION BY CANDIDATE	iii
ABSTRACT	iv
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	х
LIST OF ABBREVIATIONS AND SYMBOLS	xi
CHAPTER 1: INTRODUCTION OF PROJECT	
1.1 Introduction	1
1.2 Fundamental of Heat Equation	1
1.3 Problem Statement	5
1.4 Objectives	6
1.5 Significant of The Project	7
1.6 Scope of The Project	7
1.7 Project Benefit	8
1.8 Organizational of The Report	8

CHAPTER 2: LITERATURE REVIEW AND METHODOLOGY

2.1 Introduction	10
2.2 Literature Review	10

	2.3 Definition of Term and Concept	15
	2.4 Research Steps	16
	2.5 Conclusion	20
CHAP	TER 3: IMPLEMENTATION	
	3.1 Introduction	21
	3.2 Basic Derivation of Heat Equation	21
	3.3 Conclusion	27
CHAP	TER 4: RESULTS AND DISCUSSION	
	4.1 Introduction	28
	4.2 Derivation of Heat Equation with Dirichlet Boundary Condition	28
	4.3 Derivation of Heat Equation with Mixed Boundary Condition	
	4.3.1 Insulated Surface at x Boundaries	38
	4.3.2 Insulated Surface at y Boundaries	46
	4.3.3 Insulated Surface at z Boundaries	53
	4.3.4 Insulated Surface at x and y Boundaries	61
	4.3.5 Insulated Surface at y and z Boundaries	68
	4.3.6 Insulated Surface at x and z Boundaries	76
	4.4 Derivation of Heat Equation with Neumann Boundary Condition	83
	4.5 Discussion	91
	4.6 Conclusion	94

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

|--|

95