UNIVERSITI TEKNOLOGI MARA

EFFECT OF STRENGTH AND STIFFNESS DISTRIBUTIONS ON THE DISPLACEMENT DEMANDS OF ASYMMETRIC REINFORCED CONCRETE BUILDINGS

SUHAILAH MOHAMED NOOR

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy**

Faculty of Civil Engineering

June 2016

AUTHOR'S DECLARATION

ł

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and the result of my own work, unless otherwise indicated or acknowledge as referenced work. This thesis has not been submitted to any other academic instituition or non-academic institution for any degree or qualificatian.

I, hereby, acknowledge that I have been with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Suhailah Mohamed Noor
Student I.D. No.	:	2005704171
Programme	:	Doctor of Philosophy (EC 990)
Faculty	:	Civil Engineering
Thesis Title	:	Effect of strength and stiffness distributions on
		the displacement demands of asymmetric
		reinforced concrete buildings
		Senna: /
Signature of Student :		e sivir
Date	:	June 2016
		1

ABSTRACT

Torsional response characteristics of forty building models of elastic and inelastic asymmetric reinforced concrete buildings were studied by analyzing the near-fault and far-fault ground motions recorded during seven-pairs of recent earthquakes. The strength and stiffness eccentricities are the main parameters used in the present study contributing to the strength and stiffness distributions of building models under five main-models and eight submodels, respectively. The displacement demands of all buildings under the stiff and flexible sides were obtained from the analysis due to different values of fundamental period of vibrations as well as behavior factors by using RUAUMOKO-3D program before raw data of lateral displacement at each node were extracted using FORTRAN program. All data were then summarized in accordance to the strength and stiffness distributions in order to determine the impact of either strength distribution or stiffness distribution to the torsional behavior of one-story asymmetric reinforced concrete buildings. The torsional behavior of all building models were presented in terms of the normalized displacements at the stiff and flexible sides by the ratio of the maximum lateral displacement at the stiff and flexible sides to the maximum lateral displacement at the center of the building models. The results were finally analyzed by using MINITAB software for statistical analysis. The results of this study indicate that the torsional behavior of asymmetric reinforced concrete buildings were mainly depend on the stiffness distributions of lateral load resisting elements in the buildings rather than the strength distributions. The results of these investigations also indicate that the fundamental period of vibrations and behavior factors may increase the lateral displacements depending on the strength and stiffness distributions of buildings. Besides, the displacement demand was found insignificant regardless of the elastic and inelastic systems due to both near and far-fault ground motions. The normalized displacements were found significant to visualize the torsional behavior of asymmetric reinforced concrete building. Nevertheless, the value of elastic and inelastic normalized displacement at stiff and flexible sides was conservative regardless of different fundamental period of vibrations as well as behavior factors, which obey Equal Displacement Rule as used in all seismic design provision including Eurocode 8, considered in this study.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	х
LIST OF SYMBOLS	xviii
LIST OF ABBREVIATIONS	xxi

CHAPTER ONE: INTRODUCTION	1
1.1 Introduction	1
1.2 Background	1
1.3 Torsion in Building	5
1.4 Problem Statement	6
1.5 Objectives	8
1.6 Scope of Study	8
1.7 Thesis Layout	9

CHAPTER TWO: LITERATURE REVIEW 10

	mitoduction	
2.2	Nonlinear Analysis	12
	2.2.1 Nonlinear Time History Analysis	13
	2.2.2 Degree-of-freedom System	13
	2.2.3 Equation of Motion	15
2.3	Unbalanced Structural System	16
	2.3.1 One-story Elastic Studies	18
	2.3.2 One-story Inelastic Studies	19
	2.3.3 Multi-story Inelastic Studies	21

2.3.4 Strength and Stiffness Distributions	23
2.4 Seismic Response of Building	31
2.4.1 Fundamental Period of Vibrations	31
2.4.2 Behavior Factor	34
2.5 Ground Motion	38
2.5.2 Near-fault Ground Motion	41
2.5.3 Far-fault Ground Motion	42
2.6 Equal Displacement Rule	42
2.7 Statistical Analysis Review Studies	44
2.8 Summary	46
CHAPTER THREE: RESEARCH METHODOLOGY	47
3.1 Introduction	47
3.2 Development of Structural Model	47
3.3 Engineering Structural Model	48
3.3.1 Elastic and Inelastic Key Parameters	48
3.3.2 Modelling of the building systems	50
3.3.3 Properties of the Model	67
3.3.4 Selection of the Ground Motions	69
3.3.5 Data Input Coding Using RUAOMOKO 3D	72
3.3.6 Plastic Hinge and Backbone Curve	79
3.4 Inelastic Displacement Ratio	80
3.5 Data Management	80
3.5.1 Statistical Analysis	81
3.6 Summary	82
CHAPTER FOUR: RESULTS AND DISCUSSIONS	83
4.1 Introduction	83
4.2 Nonlinear Time-history Analysis	83
4.3 Displacement demands of asymmetric buildings	84
4.3.1 Fundamental Period of Vibrations	86
4.3.1.1 Effect of Strength Distributions	88
4.3.1.2 Effect of Stiffness Distribution	95
4.3.2 Due to Behavior Factor	106