SOLVING SECOND ORDER ORDINARY DIFFERENTIAL EQUATION USING RUNGE-KUTTA METHOD

KHALIDATUNNUR FADHILAH BINTI ABDUL KADIR NURUL ILYANA BINTI ABDUL GHAFAR

Thesis Submitted in Fulfilment of the Requirement for Bachelor of Sciences (Hons.) Computational Mathematics in the Faculty of Computer and Mathematical Sciences Universiti Teknologi Mara July 2019

DECLARATION BY CANDIDATE

We certify that this report and the project to which it refers is the product of our own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledge in accordance with the standard referring practices of the discipline.

Khalidatunnur Fadhilah Binti Abdul Kadir 2016299178

Nurul Ilyana Binti Abdul Ghafar

2016299248

11 July 2019

ABSTRACT

Second order differential equation play a prominent role in many disciplines including engineering, physics, economics, and biology. Theoretically, solving second order differential equation is to reduce it to first order and zero order differential equation which lead to laborious work of calculation. To overcome this problem, researcher tends to use numerical method. Therefore, this research present Second Order (Modified Euler, Improved Euler), Fourth Order (Classical, Butcher-Johnson) and Sixth Order (Butcher-1, Butcher-2) Runge Kutta for solving differential equation problem numerically. To determine the most efficient numerical method, the numerical solutions are compared with the theoretical solutions in terms of accuracy and CPU time with different step sizes.

TABLE OF CONTENT

DECLARATION BY THE SUPERVISOR	i
DECLARATION BY CANDIDATE	
ABSTRACT	
ACKNOWLEDGEMENT	
LIST OF TABLE	
LIST OF FIGURE	
LIST OF ALGORITHM	Х
LIST OF ABBREVIATION AND SYMBOL	
1.0 INTRODUCTION TO RESEARCH	1
1.1 Introduction	1
1.2 Background of the Study	1
1.3 Problem Statement	2
1.4 Objectives	3
1.5 Significant of Project	4
1.6 Scope of Project	4
1.7 Project Benefit	5
1.8 Definition of Term and Concept	5
1.9 Literature Review	7
1.10 Organization of Report	9
2.0 METHODOLOGY	11
2.1 Introduction	11
2.2 Research Step	11

2.3 T	Theoretical Method of Second Order ODE	17
2.	2.3.1 Method of Undetermined Coefficient	17
2.	2.3.2 Method of Variation of Parameter	19
2.4 N	Numerical Solution of Second Order ODE	20
2.	2.4.1 Second Order Runge-Kutta method (RK2)	21
2.	2.4.2 Fourth Order Runge-Kutta method (RK4)	22
2.	2.4.3 Sixth Order Runge-Kutta method (RK6)	24
2.5 C	Conclusion	27
3.0 IMPI	PLEMENTATION	28
3.1 L	Introduction	28
3.2 S	Sample of Second Order ODE problem	28
3.3 T	Theoretical Solution for Solving Second Order ODE	29
3.	3.3.1 Method of Undetermined Coefficients	30
3.	3.3.2 Method of Variation of Parameter	34
3.4 N	Numerical Solution of RK method	38
3.	3.4.1 Methods of Second Order RK version	39
3.	3.4.2 Methods of Fourth Order RK version	42
3.	3.4.3 Methods of Sixth Order RK version	46
3.5 E	Error Calculation	56
3.6 0	Conclusion	57
4.0 RES	SULTS AND DISCUSSION	58
4.1 I	Introduction	58
4.2 N	Numerical Result	58
4.3 P	Performance Profile Analysis	64