UNIVERSITI TEKNOLOGI MARA

INFLUENCE OF DIVALENT Sr²⁺, Zn²⁺ AND Ca²⁺ SUBSTITUTIONS ON ULTRASONIC VELOCITY AND ELASTIC PROPERTIES OF DyBa₂Cu₃O₇₋₈ HIGH TEMPERATURE SUPERCONDUCTORS

NORASHIKIN BINTI ABDUL RASIH

Thesis submitted in fulfilment of the requirements for the degree of

Master of Science

Faculty of Applied Sciences

January 2011

Candidate's Declaration

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This topic has not been submitted to any other institution or non-academic institution for any other degree or qualification.

In the event that my thesis be found to violate the conditions mentioned above, I voluntarily waive the right of conferment of my degree and agree be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Name of Candidate	:	Norashikin binti Abdul Rasih.
Candidate's ID No.	:	2006137751
Programme	:	Master of Science.
Faculty	:	Faculty of Applied Sciences.
Thesis Title	:	Influence of Divalent Sr^{2*} , Zn^{2*} and Ca^{2*} Substitutions on Ultrasonic Velocity and Elastic Properties of DyBa ₂ Cu ₃ O ₇₋₅ High Temperature Superconductors.

Signature of Candidate	:	Shokn

Date

January 2011

ABSTRACT

Ultrasonic longitudinal velocity measurements between 80 K and 280 K and shear velocity measurements between 80 K and 220 K have been performed in polycrystalline superconducting $DyBa_{2,r}Sr_rCu_3O_{7,\delta}$ (x = 0, 0.3, 0.6), $DyBa_2Cu_3$. $Zn_{x}O_{7,8}$ (x = 0.01 and 0.03) and $Dv_{0.8}Ca_{0.1}Ba_{2}Cu_{2.8}Zn_{x}O_{7,8}$ (x = 0.01) samples utilizing the pulsed-echo-overlap technique. A step-like longitudinal anomaly characterized by a step-like slope change was observed at 240 K for x = 0 and x = 0.3and at 260 K for x = 0.6 in DyBa_{2-x}Sr_xCu₃O₇₋₆ samples. In addition, a longitudinal anomaly was also observed at around 240 K for $DvBa_2Cu_{3x}Zn_{1x}O_{7,\delta}$ (x = 0) and at 230 K for x = 0.01 and 0.03. Substitution of Zn^{2+} which caused suppression of critical temperature. $T_{\rm c}$ however, did not suppress the step-like anomaly. On the other hand, substitution of Ca^{2+} in $Dv_{0.9}Ca_{0.1}Ba_2Cu_{3.9}Zn_{1.9}O_{7-\delta}$ ($\nu = 0.01$) caused the step-like anomaly to disappear. The step-like anomalies observed in samples were suggested due to oxygen ordering process in Cu-O chains during a phase transition process at low temperatures. For DyBa_{2-x}Sr_xCu₃O₇₋₈ (x = 0, 0.3, 0.6), the reduction in the slope change of the step-like anomalies indicates some degree of weakening of oxygen ordering due to the Sr substitution. Substitution of Zn2+ ions in place of Cu in $Dy_{0.9}Ca_{0.1}Ba_2Cu_{3.4}Zn_xO_{7-\delta}$ (x = 0.01 and x = 0.03) was suggested to go into Cu-O planes and did not interfere with oxygen ordering in Cu-O chains and cause nonsuppressed step-like anomalies in $DvBa_2Cu_{3,v}Zn_{1,v}O_{7,8}$ (x = 0.01 and 0.03) samples. But, disappearance of the step-like anomaly due to Ca^{2+} substitution in $Dy_{0.9}Ca_{0.1}Ba_2Cu_{3-x}Zn_xO_{7-\delta}$ (x = 0.01) is probably related to reduction in oxygen content which depletes at Cu-O chain sites. On the other hand, it was found that Sr substitution in DyBa_{2-x}Sr_xCu₃O₇₋₆ (x = 0, 0.3 and 0.6), Zn substitution in DyBa₂Cu₃₋ $_{x}Zn_{1,y}O_{7,\delta}$ (x = 0.01 and 0.03) and Ca²⁺ substitution in Dy_{0.9}Ca_{0.1}Ba₂Cu_{1,y}Zn_{1,y}O_{7,\delta} (y = 0.01) has the effect of lowering the calculated Debve temperature and BCS electron-phonon coupling constant, signifying that the step-like anomaly may not be related to superconductivity. A comparison between experimental data and calculated lattice anharmonicity curve based on the model by Lakkad (1971) showed that the large deviation of the experimental velocity curves for $DyBa_{2-x}Sr_xCu_3O_{7-\delta}(x)$ = 0, 0.3) and DyBa₂Cu_{3-x}Zn_{1-x}O_{7- δ}(x = 0, 0.01 and 0.03) from the calculated curves is strongly influenced by the existence of the step-like longitudinal anomalies.

TABLE OF CONTENTS

					I a
TITLE	E PAGE	2			
CANE	CANDIDATE'S DECLARATION				
ABST	ABSTRACT				
ACKN	IOWLE	EDGEM	ENTS		iv
TABL	E OF C	ONTER	NTS		v
LIST C	OF TAE	BLES			ix
LIST OF FIGURES					x
LIST OF PLATES					xv
LIST (OF SYN	MBOLS	AND ABBREVIATIONS		xv
СНАГ	PTER	1:	INTRODUCTION		1
1.1	Proble	m State	ments		4
1.2	Objectives of Study				6
1.3	Signif	icance c	f Study		6
СНАІ	PTER 2	:	BACKGROUND OF SUPERCONDUCTIVITY ANI ULTRASONIC STUDIES IN SUPERCONDUCTORS)	7
2.1	Proper	rties of S	Superconductors		8
	2.1.1	Critica	1 Temperatures		8
	2.1.2	The M	eissner Effect		9
	2.1.3	Critica	l Current Density, J_c		10
	2.1.4	Critica	Magnetic Field, H.		11

	2.1.5	Relation between T_c , J_c and H_c	11			
2.2	Type I and Type II Superconductor					
2.3	Microscopic Theory Of Superconductivity					
2.4	High-Temperature Superconductors And Related Compounds					
2.5	YBa ₂ Cu ₃ O ₇₋₈ Superconductors					
2.6	The REBa ₂ Cu ₃ O _{7-δ} System					
2.7	Bismuth Systems					
2.8	Ultrasonic Studies					
	2.8.1	Ultrasonic Waves	29			
	2.8.2	Propagation of Ultrasonic Waves	29			
	2.8.3	Generation and Detection of Ultrasonic Waves	30			
	2.8.4	Ultrasonic Studies in High-Temperature Superconductors and Electron – Phonon Coupling	31			
СНАІ	CHAPTER 3: SAMPLE PREPARATION AND EXPERIMENTAL DETAILS					
3.1	Prepar	ation of Bulk Samples	38			
	3.1.1	Preparation of $DyBa_{2-x}Sr_xCu_3O_{7-\delta}$ ($x = 0, 0.3$ and 0.6) Bulk Ceramics	38			
	3.1.2	Preparation of $DyBa_2Cu_{3-x}Zn_xO_{7-\delta}$ ($x = 0.01$ and 0.03) and $Dy_{0.9}Ca_{0.1}Ba_2Cu_{3-y}Zn_yO_{7-\delta}$ ($y = 0.01$) ceramics	40			
3.2.	Basic S	Sample Characterization Methods	43			
	3.2.1	Temperature Dependent Electrical Resistance Measurement	43			
	3.2.2	Room Temperature Resistivity Measurement	46			
	3.2.3	X-ray Powder Diffraction (XRD)	47			