UNIVERSITI TEKNOLOGI MARA

ISOLATION OF STILBENOID COMPOUNDS FROM *MACARANGA HEYNEI* I.M. JOHNSON AND *SHOREA LEPROSULA* MIQ., BIOSYNTHETIC PATHWAY, SYNTHESIS OF STILBENOID ANALOGUES, AND THEIR BIOACTIVITIES

AISYAH SALIHAH BINTI KAMAROZAMAN

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy (Chemistry)

Faculty of Applied Sciences

May 2019

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Aisyah Salihah Binti Kamarozaman
Student I.D. No.	:	2014900863
Programme	:	Doctor of Philosophy – AS950
Faculty	:	Applied Sciences
Thesis Title	:	Isolation of Stilbenoid Compounds from Macaranga heynei I.M. Johnson and Shorea leprosula Miq., Biosynthetic Pathway, Synthesis of Stilbenoid Analogues, and Their Bioactivities
Signature of Student	:	<u>بر ایم ا</u>
Date	:	May 2019

ABSTRACT

The phytochemical investigations were conducted on two plants namely Macaranga heynei I.M. Johnson (Euphorbiaceae) and Shorea leprosula Mig. (Dipterocarpaceae). The aim of this study are to isolate the secondary metabolites from two plants as mentioned, to propose the biosynthetic pathway of new isolated compounds, to synthesize the stilbene analogues, to evaluate the bioactivities of isolated and synthesised compounds as well as to discuss the structure-activity relationship (SAR) of the results from bioassays. The isolation process was conducted by using several chromatographic techniques such as thin laver, vacuum liquid, radial, column and preparative thin laver chromatographies. The structures of the isolated compounds were elucidated by means of various spectroscopic analyses namely infrared (IR), ultraviolet-visible (UV-Vis), mass (MS) and nuclear magnetic resonance (NMR) spectroscopies; optical rotation. melting point, polarimeter and comparison with the previous literature studies. Ten dihydrostilbenes were isolated from the leaves of M. heynei which seven of them are new compounds characterised as malayheyneiins A-G (230-236) and three known compounds namely laevifolins A (148) and B (149) as well as macarubiginosin C (152). Six oligostilbenoids were obtained from the purification on the stem bark of S. leprosula; (-)-roxburghiol A (179), (-)-laevifonol (167), (+)- α -viniferin (156), (-)-hopeaphenol (213), (+)-isohopeaphenol (214) and (-)-hemsleyanol D (223), (-)-Roxburghiol A (179), (+)-isohopeaphenol (214) and (-)-hemsleyanol D (223) were firstly reported in this species. In DPPH radical scavenging activity, malayheyneiins A (230) and C (232), laevifolins A (148) and B (149), macarubiginosin C (152), $(+)-\alpha$ -viniferin (156), (-)-hopeaphenol (213) and (-)-hemsleyanol D (223) are good DPPH scavengers (IC50 = 4.56-10.25 µM). Both dihydrostilbenes and oligostilbenoids were derived from phenylpropanoid pathway but the route of dihydrostilbenes has its own special network. It is being separated from stillbenes by the action of double bond reductase (DBR) on p-coumaroyl CoA prior to the action of stilbene synthase (STS) enzyme. In acetylcholinesterase inhibitory assay, malayheyneiins B (231) and C (232), macarubiginosin C (152) and hopeaphenol (213) showed significant activity ($IC_{50} = 5.06$ - 10.00 uM). In the antibacterial assay, laevifolins A (148) and B (149) displayed moderate activity against Staphylococcus cohnii. Interestingly, laevifolin B (149) demonstrated strong inhibition (IC₅₀ = 1.64 μ M) against S. aureus whilst laevifolin A (148) showed moderate activity. Laevifolin A (148) and macarubiginosin C (152) displayed significant inhibition against HT-29 cancer cell line with the IC₅₀ values of 21.20 and 55.30 µM respectively. In addition, three deoxybenzoin and twelve stilbene analogues were synthesised using Fridel-Craft acylation and Wittig reactions respectively. All major compound were examined for DPPH radical scavenging, acetylcholinesterase inhibitory and antibacterial activities. 2.3'.4.4'-Tetrahydroxy deoxybenzoin (238) gave moderate scavenging activity ($IC_{50} = 22.34 \mu M$). Interestingly, 2.4.4'-trihydroxy deoxybenzoin (237) displayed excellent activity against acetvlcholinesterase inhibitory (IC₅₀ = 1.02μ M). Structure-activity relationship studies on the assays revealed the presence of prenyl group and catechol moiety in the compounds as one of the factors that contributed to the good activity.

20

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF PLATES	xvii
LIST OF SCHEMES	xviii
LIST OF SYMBOLS	xix
LIST OF ABBREVIATIONS	xx

CHAPTER ONE: INTRODUCTION			
1.1 Research Background	1		
1.1.1 Natural Products	1		
1.1.2 Study of Natural Products	3		
1.2 Problem Statement			
1.3 Objectives	6		
1.4 Significance of Study	6		
CHAPTER TWO: LITERATURE REVIEW	7		
2.1 Family of Euphorbiaceae	7		
2.1.1 The Genus of Macaranga	8		
2.1.2 Macaranga heynei I.M. Johnson	12		
2.2 Phytochemical Studies on Macaranga	14		
2.2.1 Flavonoids	14		
2.2.1.1 Flavanones	15		
2.2.1.2 Flavones	23		
2.2.2 Stilbenes	29		

	2.2.3	Dihydrostilbenes (Bibenzyls)	34
2.3	Pharm	acological Properties of Macaranga	36
	2.3.1	Acetylcholinesterase Inhibitory	36
	2.3.2	Antimicrobial	36
	2.3.3	Antioxidant	37
	2.3.4	Cytotoxicity	37
	2.3.5	Other Activities	39
2.4	Famil	y of Dipterocarpaceae	48
	2.4.1	The Genus of Shorea	50
	2.4.2	Shorea leprosula Miq.	54
2.5	Phyto	chemical Studies on Shorea	55
	2.5.1	Oligostilbenoids	56
		2.5.1.1 Monomer Stilbenoids	57
		2.5.1.2 Dimer Stilbenoids	59
		2.5.1.3 Trimer Stilbenoids	65
		2.5.1.4 Tetramer Stilbenoids	74
2.6	Pharn	nacological Properties of Crude Extracts and Oligostilbenoids from	
	Shore	a	80
	2.6.1	Artemia salina	80
	2.6.2	Antioxidant	81
	2.6.3	Antimicrobials	82
	2.6.4	Cytotoxicity	82
	2.6.5	Neuroprotective	84
	2.6.6	Other Activities	85
2.7	Biosy	nthesis of Flavonoids, Oligostilbenes and Dihydrostilbenes (Bibenzyls)	92
	2.7.1	Chemistry of Flavonoids	92
	2.7.2	Chemistry of Stilbenoids	94
	2.7.3	Biosynthesis of Flavonoids and Stilbenoids	96
2.8	Synth	nesis of Stilbenoids	99
	2.8.1	Pharmacological Properties of Synthesised Stilbenoids	9 9
	2.8.2	Synthesis of Stilbenoid Analogues	100
		2.8.2.1 Stilbenes	101
		2.8.2.2 Dihydrostilbenes (Bibenzyls)	103