COMPARATIVE STUDY OF NEWTON'S METHOD, BROYDEN'S METHOD AND STEEPEST DESCENT METHOD

NUR ALIA SYAHIRAH BINTI MAZLAN NURZAHIDA BINTI MOHD ZAHARUDDIN

BACHELOR OF SCIENCE (HONS.) COMPUTATIONAL MATHEMATICS UNIVERSITI TEKNOLOGI MARA

2019

DECLARATION BY CANDIDATE

I certify that this report and the project to which it refers is the product of my own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

NUR ALIA SYAHIRAH BINTI MAZLAN 2016299258 11 JULY 2019

NURZAHIDA BINTI MOHD ZAHARUDDIN

2016284376

11 JULY 2019

ABSTRACT

Mathematically, numerical analysis is the area of computer science and computer mathematics that creates, analyses and implements for solving of continous mathematics in numerical problem. Thus, this research significantly presents a detailed study of the comparison in iterative methods for solving non-linear system using Newton's Method, Broyden's Method and Steepest Descent's Method. These iterative methods are choose since they are well-known basic iterative methods in numerical analysis. The purpose of this study is to identify which method is the most efficient based on its number of iteration and CPU time. Therefore, researchers can decide the most appropriate method for their work by the comperative study.

TABLE OF CONTENT

DECLARATION BY THE SUPERVISOR	i
DECLARATION BY THE CANDIDATE	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
LIST OF TABLE	viii
LIST OF FIGURE	ix
LIST OF ABBREVIATION AND SYMBOL	х
LIST OF ALGORITHM	xi
1.0 INTRODUCTION OF RESEARCH	1
1.1 Introduction	1
1.2 Background of Study	1
1.3 Problem Statement	3
1.4 Objectives	4
1.5 Significance of Project	4
1.6 Scope of the Project	5
1.7 Project Benefit	5
1.8 Organization of Project	6
2.0 METHODOLOGY	8
2.1 Introduction	8
2.2 Literature Review	8

v

2.3 Definition of Terms and Concepts	12
2.4 Research Steps	13
2.5 Test Function	17
2.6 Algorithm	18
2.6.1 Newton's Method	18
2.6.2 Broyden's Method	19
2.6.3 Steepest Descent Method	20
2.7 Stopping Criteria	21
2.8 Conclusion	23
3.0 IMPLEMENTATION	24
3.1 Introduction	24
3.2 Standard Optimization Test Functions	24
3.2.1 Problem 1(White & Holst function, n=2)	25
3.2.2 Problem 2(Extended Himmelblau function, n=2)	26
3.2.3 Problem 3(Strait function, n=2)	27
3.2.4 Problem 4(Rosenbrock function, n=2)	28
3.3 Implementations of Unconstrained Optimization Method	29
3.3.1 Implementations of Newton's Method	29
3.3.2 Implementation of Broyden's Method	32
3.3.3 Implementation of Dteepest Descent Method	36
3.4 Conclusion	39
4.0 RESULTS AND DISCUSSION	41
4.1 Introduction	41