UNIVERSITI TEKNOLOGI MARA

FABRICATION AND VARIFICATION OF POROUS SILICON NANOSTRUCTURES/ ZINC OXIDE NANOSTRUCTURES AS A CAPACITIVE CHEMICAL SENSORS BY ELECTROCHEMICAL IMPEDANCE METHOD

MOHD HUSAIRI BIN FADZILAH SUHAIMI

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy**

Faculty of Applied Sciences

September 2015

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Mohd Husairi bin Fadzilah Suhaimi			
Student's ID No.	;	2010511219			
Programme	:	Doctor of Philosophy			
Faculty	:	Applied Sciences			
Thesis Title	:	Fabrication and Verification of Porous Silicon			
		Nanostructures/ Zinc Oxide Nanostructures as a			
		Capacitive Chemical Sensors by Electrochemical			
		Impedance Method			
Circuit and Color land		Huper			

Signature of Student	:	Hudrie
Date	:	September 2015

ABSTRACT

In this study, preparation and optimization of ZnO nanostructures on PSiNs for chemical sensor was studied. The PSiNs was prepared by electrochemical etching using p-type, [100] orientation silicon wafer as a based material. The PSiNs samples were prepared by the electrochemical etching with photo-assisted at different current density in the range of 15-40 mA/cm² and etching time at 10-50 minutes. Photoluminescence spectra show blue shift with increasing applied current density that is attributed by PSiNs pillar size. Variations of electrical resistance and capacitance values of PSiNs were measured using EIS. These results indicate that PSiNs prepared at 20 mA/cm² current density and 30 minutes have uniform porous structures with a large demsity of pillars. Furthermore, PSiNs structure influences large values of charge transfer resistance and double layer capacitance, indicating potential application in sensors. The ZnO nanostructures were synthesized on PSiNs substrates using thermal catalytic-free immersion method with Zn(NO₂)₂6H₂O as a precursor and CH₄N₂O as a stabilizers. Three parameters was used to optimized the maximum changes of capacitance on ZnO nanostructures on PSiNs, solution concentration (0.1, 0.2 and 0.3 molar), molarity of CH₄N₂O (0.05, 0.1, 0.2, 0.4 and 0.6 molar) and immersion time (2, 4, 6, 8 and 10 hour). ZnO nanoparticle and nanoflowers were successfully synthesized on PSiNs substrate. An approach to fabricate chemical sensor based on the PSiNs/ZnO nanostructures arrays that uses an electrochemical impedance technique is reported. Sensor performance was evaluated by ethanol solutions using EIS measurement, PSiNs/ZnO nanostructure exhibits higher sensitivity than PSiNs, with 85.96% response after exposure to ethanol for 2 min. Compared with the PSiNs sensor, the response of which is low at only 20% and the maximum response of 48% is reached 6 min later. PSiNs/ZnO nanostructures with a response of 85.96% after exposure to ethanol for 2 min remains constant for some period time (10 min). This stability in response proved that the sample is stable and suitable as a sensing material based. The results indicate that the PSiNs/ZnO nanostructure chemical sensor exhibits rapid and high response to ethanol compared with a PSiNs sensor because of its small particle size and an oxide layer acting as a capacitive layer on the PSiNs surface. After that, the sensor was tested with different chemical solution, acetone, chloroform, benzene and toluene. For PSiNs sensor the response is low at ethanol, toluene and benzene with only 40%, and the maximum response of 60% is reached in 10 min. Compared with the PSiNs sensor, the PSi/ZnO nanostructures prepared sample exhibits higher sensitivity to ethanol, acetone and toluene, as observed above 70% response after exposure for 10 min. Both the sensors (PSiNs and PSiNs/ZnO nanostructures) give the least response to benzene as compared to others chemical solution. The benzene response in 10 minutes for PSiNs and PSiNs/ZnO nanostructures was lowest compare to other. There appeared two sensors show the resistance changes at 45% and 31% response, respectively. The sensor performance was improved when ZnO nanostructures deposited on PSiNs surface.

TABLE OF CONTENTS

Page

CO	INFIRMATION BY PANEL OF EXAMINERS	ii
AU	THOR'S DECLARATION	iii
AB	STRACT	iv
AC	KNOLEDGEMENT	v
TA	BLE OF CONTENTS	vi
LIS	ST OF TABLES	x
LIS	ST OF FIGURES	xii
LIS	ST OF ABBREVIATIONS	xx
CH	APTER ONE: INTRODUCTION	1
1.1	Introduction of Nanotechnology	1
1.2	Nanotechnology in Sensor Device	2
1.3	Problem Statements	2
1.4	Objective	4
1.5	Significant of Study	4
1.6	Scope of Study	5
СН	APTER TWO: LITERATURE REVIEW	7
	Introduction	7
	Nanostructures Sensor	, 7
	Porous Silicon Nanostructures	9
2.3		
	2.3.1 Introduction	9
	2.3.2 The Formation of Porous Silicon by Electrochemical Etching	
	Method	10
	2.3.3 Properties of Porous Silicon Nanostructures	13

	2.3.4 Porous Silicon Nanostructures as a Sensor	19
2.4	Zinc Oxide Nanostructures	22
	2.4.1 Introduction	22
	2.4.2 Properties of Zinc Oxide Nanostructures	23
	2.4.3 Zinc Oxide Nanostructures as a Sensor	30
2.5	ZnO Nanostructures on PSiNs	33
	2.5.1 Introduction	33
	2.5.2 Properties of PSiNs/ZnO Nanostructures	33
	2.5.3 PSiNs/ZnO Nanostructures as a Sensor	38
2.5	Electrochemical Impedance Spectroscopy	42
СН	APTER THREE: METHODOLOGY	46
3.1	Introduction	46
3.2	Preparation of Porous Silicon Nanostructures by Electrochemical Etching	
	Method	47
	3.2.1 Introduction	47
	3.2.2 Cleaning of Silicon Wafer	48
	3.2.3 Preparation of PSiNs	49
	3.2.4 Effect of Current Density	50
	3.2.5 Effect of Etching Time	50
	3.2.6 Characterization of Porous Silicon Nanostructures	50
3.3	Synthesis Zinc Oxide Nanostructures on PSiNs by Free-Catalytic Thermal	
	Immersion Method	57
	3.3.1 Introduction	57
	3.3.2 Preparation of Precursor Zn ²⁺ Solution	58
	3.3.3 Free-Catalytic Thermal Immersion Method	60
	3.3.4 Effect of Molar Concentration of Zinc Oxide Solution	61
	3.3.5 Effect of Stabilizer Ratio Zinc Oxide Solution	61
	3.3.6 Effect of Immersion Time	61