COMPARISON OF CONJUGATE GRADIENT METHODS FOR DEVELOPING THE MULTIPLE LINEAR REGRESSION MODEL FOR RUBBER YIELD IN MALAYSIA

ANIS SHAHIDA BINTI ROHIMI OZEMAN

BACHELOR OF SCEINCE (HONS.) COMPUTATIONAL MATHEMATICS UNIVERSITI TEKNOLOGI MARA

2018

DECLARATION BY CANDIDATE

I certify that this report and the project to which it refers it refer is the product of my own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledge in accordance with the standard referring practices of

the discipline. 1

ANIS SHAHIDA BINTI ROHIMI OZEMAN

2015409326

JULY 2018

ABSTRACT

Regression analysis is known as a statistical technique for estimating the relationship between variables which have reason and result relation. In this research, regression models with one dependent variable and more than one independent's variable called multiple linear regression (MLR) is been used to produce a regression model for rubber yield in Malaysia. Meanwhile, Conjugate Gradient (CG) method is used to solve regression parameter through the normal equation since it is a well-known method due to the simplicity, easiness and low memory requirement. The selected CG formulas are from classical CG which is Fletcher-Reeves (FR), Polak-Ribiere-Polyak (PRP), Hestenes-Stiefel (HS), and Rivaie et al. (RMIL). Then, the result from MLR, selected variants of CG method and inverse matrix method will be compared. Based on the result, beta coefficient of CG-FR proved to be best method to produce the best regression model with the least root mean square error value.

TABLE OF CONTENTS

PAGE

DECLARATION BY THE SUPERVISORS	Ι
DECLARATION BY CANDIDATE	II
ABSTRACT	III
ACKNOWLEGMENT	IV
TABLE OF CONTENT	V
LIST OF TABLES	VIII
LIST OF FIGURES	IX
LIST ABBREVIATIONS AND SYMBOLS	Х
LIST OF ALGORITHMS	XI

1.0 INTRODUCTION OF RESEARCH

1.1	INTRODUCTION	1
1.2	BACKGROUND OF STUDY	1
1.3	PROBLEM STATEMENT	5
1.4	OBJECTIVE	7
1.5	SIGNIFICANCE OF PROJECT	7
1.6	SCOPE OF PROJECT	8
1.7	DEFINITION OF TERM AND CONCEPT	9
1.8	ORGANIZATION OF THE REPORT	10

2.0 METHODOLOGY

2.1	INTF	RODUCTION	12
2.2	LITE	RATURE REVIEW	12
	2.2.1	CONJUGATE GRADIENT	12
	2.2.2	CASE STUDY: RUBBER YIELD IN MALAYSIA	15
2.3	RESI	EARCH STEP	17
2.4	CON	CLUSION	24

3.0 IMPLEMENTATION

3.1	INTRODUCTION	25
3.2	RESEARCH DATA	25
	3.2.1 THE VARIABLES	26
	3.2.2 INITIAL POINTS AND DISTANCE	30
3.3	MULTIPLE LINEAR REGRESSION ANALYSIS METHOD	33
	3.3.1 LEAST SQUARE ESTIMATION OF VARIABLES	36
3.4	IMPLEMENTATION OF MATRIX INVERSION METHOD	36
3.5	IMPLEMENTATION OF CONJUGATE GRADIENT	37
3.6	ERROR CALCULATION AND ANALYSIS	42
	3.6.1 ROOT MEAN SQUARE ERROR CALCULATION	42
3.7	CONCLUSION	43

4.0 RESULT AND DISCUSSION

4.1	INTRODUCTION	44
4.2	RESULT OF MULTIPLE LINEAR REGRESSION ANALYSIS	44
	4.2.1 MODEL SUMMARY TABLE	44