EXPERIMENTAL DETERMINATION OF THE EFFECT OF TURBULENT INTENSITY ON AERODYNAMIC CHARACTERISTICS OF REMOTELY PILOTED VEHICLE

INSTITUT PENYELIDIKAN, PEMBANGUNAN DAN PENGKOMERSILAN UNTVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

BY:

ZURRIATIMOHD ALI DATUK PROF IR DR OW CHEE SHENG PROF MADYA MOHD ZULKIFLY ABDULLAH

MAY 2007

TABLE OF CONTENTS

- ACKNOWLEDGEMENT
- TABLE OF CONTENTS
- LIST OF FIGURES LIST
- OF TABLES
- ABSTRACT

CHAPTER ONE	INTRODUCTION	1
1.1	AERODYNAMIC	1
1.2	SCOPE OF STUDY	2
1.3		2
1.4	USM'S 6FA-1 REMOTELY PILOTED VEHICLE	2
CHAPTER TWO	LITERATURE REVIEW	6
2.1	AIRCRAFT AERODYNAMICS	6
2.	1.1 Aerodynamics forces on aircraft	6
2.	1.2 Reynolds's Number	14
2.	1.3 Airflow around the airfoil	10

2.1.4 Development of RPV in Malaysia 13

2.2	WIND TUNNEL TESTING	26
2.4	RESEARCH ON THE AEROSPACE ENGINEERING AERODYNAMICS	-
	EXPERIMENTAL METHODS	28
2.5	TURBULENT AND TURBULENCE INTENSITY	32
	2.5.1 Turbulent Flow	32
	2.5.2 Mathematical Terms in Turbulence	33
	2.5.3 Turbulence Intensity and Its Definition	34
CHAPTER THR	EE EXPERIMENTAL APPARATUS AND PROCEDURES	37
3.1	WIND TUNNEL FACILITY	37
3.2	DESCRIPTION OF MODEL	38
3.3	SIMILITUDE ANALYSIS	41
3.4	WIND TUNNEL INTERFERENCE	43
3.5	TESTING PROCEDUR	43
CHAPTER FOU	R EXPERIMENTAL RESULTS	46
4.1	AERODYNAMIC CHARACTERISTICS OF THE RPV	46
4.2	THE EFFECT OF TURBULENT INTENSITY	57
CHAPTER FIVE	ERROR ANALYSIS	61
CHAPTER SIX	COMPARISON BETWEEN EXPERIMENTAL RESULTS AND	
	SIMULATION RESULT	65

CHAPTER SEV	EN CONCLUSION AND SUGGESTION FOR FUTURE WORKS	72
7.1	CONCLUSION	72
7.2	THE SUGGESTION FOR THE FUTURE WORKS	72
REFERENCES		74
APPENDICES		75

ABSTRACT

Remotely Piloted Vehicle (RPV) in our country Malaysia, still in an early stage. The development of unmanned vehicle by Composite Technology Research Malaysia (CTRM), encourage the local researchers and scientist to study the importance and the capability of RPV. The unique design of RPV is a new challenge for the design engineers and aerodynamicists. In present study, the aerodynamics investigations are carried out on a USM eFA-1 RPV using the computational and experimental methods. The computational analysis is made on a three dimensional model of RPV using computational fluid dynamics (CFD) code FLUENT 6.0. The experimental works are carried on a scale model and tested in an open circuit wind tunnel. The investigations have been carried out at three different Reynolds Numbers, i.e., 1.05 x 10^5 , 1.26 x 10^5 and 1.60 x 10^8 , at different angle of attack. The aerodynamics characteristics lift and drag coefficients obtained from the experimental work are compared to the simulation result. The results show that the lift and drag coefficients are increased with the angle of attack. The simulation result shows the fairly good agreement with the experimental result but at the stall angle it can't predict the stall phenomena. This is due to the limitation of turbulence model used in this study. The flow visualization helps in better understanding for the flow around the RPV with different angle of attack. The results obtained will provide an aerodynamic database of the eFA-1 RPV for the future use.