MODELING OF THREE-PHASE HARMONIC RECTIFICATION SCHEME USING CURRENT INJECTION TECHNIQUE

INSTITUT PENYELIDIKAN, PEMBANGUNAN DAN PENGKOMERSILAN UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

BY:

MOHD NAJIB BIN MOHD HUSSAIN AHMAD ASRI BIN ABD SAMAT MOHAMAD FAIZAL BIN ABD RAHMAN

AUGUST 2007

Table of Contents

TABLE OF CONTENTS		ii
LIST OF F	IGURES	vi
LIST OF T	ABLES	ix
LIST OF S	YMBOLS AND ABBREVIATIONS	х
ABSTRAC	T	xii
CHAPTER	R 1: INTRODUCTION	1
1.1	Introduction	1
1.2	Literature Review	4
1.3	Project Objectives	8
1.4	Project Organization	8
CHAPTER	R 2: METHODOLOGY	10
1.1	Introduction	10
2.2	Modeling in MATLAB/Simulink	13
	2.2.1 Introduction to Matlab/Simulink	13

CHAPTER 3: HARMONICS REDUCTION USING CURRENT INJECTION

	METHOD	15
3.1	Introduction	15
3.2	Harmonic Standards and Solutions	17
	3.2.1 Definitions and terms for the standard	19
3.3	Basic Principle of Current Injection Approach	20
3.4	Proposed Rectification scheme	26

CHAPTER 4: POWER STAGE AND CONTROL DESIGN OF THE PROPOSED

	SCHI	ΕΜΕ	31
4.1	Introdu	uction	31
4.2	Three-	32	
4.3	Three-phase transformer (two windings)		
4.4	Three-Phase inductor		
4.5	The Zig-Zag Transformer		
4.6	Control and Reference signal model		
4.7	Desigr	44	
	4.7.1	Transformer VA Rating	44
	4.7.2	The Zig-Zag Transformer VA Rating	45
	4.7.3	Inverter Switches Rating	46
	4.7.4	Capacitor Rating	46
	4.7.5	Inductor Rating	47

CHAPTER 5: ANALYSIS OF THE PROPOSED SCHEME		
5.1	Introduction	50

5.2	Determination of the Zig-Zag transformer performance to the input		
	sources	51	
5.3	Determination of the output voltages	56	
5.4	Determination of the input current sources	58	
5.5	Optimal Current Injection	60	
5.6	Computational Mathematical Approach	66	
	5.6.1 Discrete Fourier Transform	66	
	5.6.2 Fast Fourier Transform	69	
CHAPTER 6	: RESULTS AND SIMULATIONS ANALYSIS	74	
6.1	Introduction	74	
6.2	Hardware Prototype of Three-Phase Rectifier using Current Injection		
	Technique	74	
	6.2.1 Hardware Prototype Result	76	
6.3	Three-Phase Harmonic Rectification Scheme using two Half-Bridge		
	Inverter as a Current Injection Device		
	6.3.1 AC side of the Rectifier waveforms	83	
	6.3.2 FFT Analysis	85	
6.4	New Three-Phase Harmonic Rectification Scheme using Three-Phase		
	Inverter as a current injection device	89	
	6.4.1 Harmonic injection on the proposed scheme	93	
	6.4.2 Simulation under Different Source Conditions	94	
	6.4.2.1 Unbalanced source condition for new proposed scheme	94	
	6.4.2.1.1 AC side of the Rectifier waveforms of		
	new proposed scheme	94	

	6.4.2.1.2	FFT Analysis for input current of	
		three-phase rectifier	95
	6.4.2.2 Balanced	source condition for new proposed scheme	96
	6.4.2.2.1	AC side of the Rectifier waveforms of	
		new proposed scheme	97
	6.4.2.2.2	FFT Analysis for input waveform of	
		three-phase rectifier	98
6.5	Analysis of output volta	ge and current of the new proposed scheme	98
	6.5.1 FFT Analysis of	output waveform	101
CHAPTER 7: DISCUSSION AND CONCLUSION			103
7.1	Discussion		103

7.3	Contributions	104
7.4	Future Work	104

REFERENCES

7.2 Conclusion

105

104

APPENDIX A

APPENDIX B

ABSTRACT

A new harmonic reduction of the three-phase rectification concept with harmonic current injection technique is developed using three-phase inverter as a current injection device. The injection current based on zero-sequence triplen-odd harmonic will automatically generate and then circulated through the ac side of the three-phase rectifier via the Zig-Zag transformer which provides low-leakage impedance for the current harmonics generated, resulting in pure sinusoidal input current in the three-phase diode bridge rectifier.

The injection principle is graphically explained in current waveforms and mathematically proved. The current injection methods are proposed to meet either the THD requirement or the IEEE-519 recommended guidelines and standards. The analysis, design of the modeling, and simulations are presented to determine the performance of the new proposed scheme with the different conditions. The modeling and simulation of the new proposed current injection device are verified and compared with a 1.5-kVA prototype provide by previous approach done by using the same parameters.

The Three-Phase PWM Inverter design is discussed with a simple power control and reference signal model developed to make inexpensive cost for a new proposed scheme. Besides, the existence of three-phase inductor at the load side are being discuss in term of effective THD of the output current waveform. The selected results are being present and verified by simulation in Matlab/Simulink software.

xii