ANALYSIS OF SOUND PRESSURE LEVEL (SPL) EFFECTS ON VARIOUS ROOM MODES IN UITMPP

BY :

NORSABRINA SIHAB RIHANA YUSUF ZURITA ZULKIFLI

MAY 2008

TABLE OF CONTENTS

DECLARATIONS	
ACKNOWLEDGEMENTS	
TABLE OF CONTENTS	ii-vi
LIST OF FIGURES	v
LIST OF TABLES	vi
ABBREVIATIONS	vii
LIST OF SYMBOLS	viii
ABSTRACT	ix

CHAPTER 1	PROJECT OVERVIEW	
1.0	Chapter Overview	1
1.1	Background of Study	1
1.2	Objective of the Project	3
1.3	Sound Pressure Level Analysis	3
1.4	Scope of Works	3
1.5	Overview	4

CHAPTER 2	LITERATURE REVIEWS	
2.0	Chapter Overview	6
2.1	Introduction	6
2.2	Wave Terminology	7
	2.2.1 Standing Waves	7
	2.2.2 Spherical Wave	8
2.3	Frequency of Sound	8
2.4	Speed of Sound	9
2.5	Wavelength	10
2.6	Amplitude	10

2.7	Sound Pressure	10
2.8	Sound Pressure Level (SPL)	11
2.9	Decibel	12
2.10	Room Modes	12
	2.10.1 Axial Mode	12
	2.10.2 Tangential Mode	16
	2.10.3 Oblique Mode	17
2.11	Room Resonance	18
2.12	Optimum Room Dimension	18
2.13	Driving Room at Source Location	20
2.14	Loudness	21
CHAPTER 3	METHODOLOGY	
3.0	Chapter Overview	23
3.1	Methodology of Project	23
3.2	Simulation Overview	24
3.3	Flow Chart of the Programming	25
CHAPTER 4	RESULTS AND DISCUSSIONS	
4.0	Chapter Overview	28
4.1	Effect of Dimension toward the Frequency Response in	28
	Room	
4.2	Effect of the Distribution of Axial, Tangential And	31
	Oblique Modes toward Distance	
4.3	The Comparison of All Modes	44
4.4	The Worst Type Condition	46
4.5	The Second Worst Type of Room	49
CHAPTER 5	CONCLUSION AND RECOMMENDATION	
5.0	Chapter Overview	53
5.1	Conclusions	53
5.2	Recommendations for Future Development	54

REFERENCES APPENDIX A APPENDIX B

ABSTRACT

The acoustic quality in certain room depends on its dimension and will response to the room modes for example the axial, tangential and oblique mode of the room. Sound of pressure level (SPL) is a parameter that can be affected by room modes and it is important to design a room or multipurpose hall. This project is focused in FKE's meeting room (7.22) and in a class room (3.57). These two rooms are analysed by using the MATLAB 7.0 to determine the SPL values towards the room modes and room's dimension. The dimension of the room should not have same width, length or height to avoid the same eigentone frequencies exists. The best room designed with a good sound quality must have several of eigentone frequencies range which are evenly distributed, rather than just groups of eigentones that clustered together. The room should not be too small or too large for a good distribution of eigentones through out the room. The worst condition of room dimension is a perfect cubic for example (3.5x3.5x3.5) meters because the equally dimensions can caused the same eigentone frequencies exist. The small room produces higher eigentone frequencies while the larger room produces lower eigentone frequencies. Each eigentone frequency has its own SPL which will deteriorate with the increase of the distance from the source.