
Multidisciplinary Informatics Journal 

Vol. 1, No. 1, June 2018, Pg. 17-26 

17 

 

 

 

SCRIPTING LANGUAGE FRAMEWORK IN SOLVING FACILITY LAYOUT 

PROBLEM (FLP) BASED ON META-HEURISTICS HYBRIDIZATION 

 

S.Masrom1,*, N.Ahmad1 , N.Omar2, and A.S.A. Rahman3 

 

1Faculty of Computer and Mathematical Sciences,Universiti Teknologi MARA, Perak Branch 

Tapah Campus, Perak, MALAYSIA 

2Faculty of Computer and Mathematical Sciences,Universiti Teknologi MARA, Shah Alam, 

Selangor, MALAYSIA 

3Faculty of Science and Information Technology, Universiti Teknologi PETRONAS, Perak, 

MALAYSIA  

Author Correspondence, e-mail: suray078@perak.uitm.edu.my 

 

Received: 10 April 2018 / Accepted: 15 May 2018/ Published online: 1 June 2018 

  

ABSTRACT  

Facility layout can be seen everywhere in people’s daily life and industry so that it has a broad 

research background, which returns the economic and social benefits. Besides time critical, another 

challenge of creating a facility layout is to resolve dynamic factors, such as the modification of 

building layout and the placement of new elements in the layout. Users may rely on computerized 

facility layout, but when involves with dynamic factors, a great deal of technical hurdles appears 

mainly in the computer programming. Therefore, this research proposes an easy programming 

approach to solve facility layout problem with meta-heuristics algorithm in a scripting language 

software framework.  Evaluation results indicated that the codes of the scripting language are 

simpler and concisely describe the algorithms in a directly publishable form. 

Keywords: scripting language; facility layout; optimization; meta-heuristics. 

 

1. INTRODUCTION 

The Facility layout problem (FLP)[1] exists everywhere in people’s daily life, organizations                                                                        

and industries.  The FLP is a well-studied combinatorial optimization problem that emerged in 

a variety of problems such as layout design of hospitals, schools, airports, networking and 

backboard wiring. The most common objective in FLP is minimizing the facility resources costs 

that are determined based on the flow between the facilities and the distance between each 
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facilities location. Due to the dynamic and impulsive environment in today’s industry 

operations, dynamic FLP appears to be very important. The dynamic FLP extends the static 

FLP by involving the changes in resources flow over multiple periods as well as the costs of 

rearranging the layout. Users may rely on computerized facility layout, but when involves with 

dynamic factors, a great deal of technical hurdles appears mainly in the computer programming.  

The objectives of this paper are two-folds. First is to demonstrate an easy and a flexible of 

scripting language for developing algorithms in solving the facility layout optimization 

problem. Second objective is to incorporate two meta-heuristics algorithms namely Particle 

Swarm Optimization(PSO) and Genetic Algorithm(GA) for solving the FLP. While scripting 

language has been widely used for many kinds of complex systems, very little scientific study 

has been reported about scripting language for the facility layout optimization problem based 

on PSO-GA hybrids.  

This paper is organized as follows. Section 2 describes the research background of FLP, 

the meta-heuristics approach and about scripting and programming languages. Section 3 

describes the proposed scripting language of the PSO-GA hybrids for FLP followed by the 

evaluation results in Section 4. Section 5 presents the conclusion of this paper. 

 

2. BACKGROUND OF STUDIES 

2.1. Definition of FLP 

The formulated models of the FLP can be adopted based on Quadratic Assignment Model 

(QAP), Mix Integer Programming (MIP) and Graph Theory. QAP [1] model is considered as 

NP-complete and the objective is to assign all facilities to different locations with the goal of 

minimizing either the sum of the distances, the time and/or cost for reaching the locations 

multiplied with the corresponding flows.  Graph theory [2] model is defined as a node within a 

graph network that rely on a predefined desirable adjacency of each pair of facilities .  In other 

words, the graph theory approaches, it is assumed that the desirability of locating each pair of 

facilities adjacent to each other is known. MIP model also has gained some attention as a way 

of modeling the FLP such as in the research done by [3].  Interest ideas were reported in the 

paper is a combination of MIP with Genetic Algorithm, which is a common meta-heuristics 

algorithm. 

 

2.2. Meta-heuristics approach in solving FLP  

Various meta-heuristics such as Particle Swarm Optimization and Genetic Algorithms have 

been used to approximate the solution of FLP.  Currently, research that used GA for FLP in 
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solving dynamic properties of the problem has been reported in[4][5][6]. Some approaches that 

used meta-heuristics hybridizations also found to be effective[7][8].  Majority of these research 

used meta-heuristics as to finding the minimum total distances for reaching all the input 

locations. Since most researchers working with meta-heuristics are required to develop their 

own algorithm for their specific problem including FLP, the task of selecting, modifying and 

extending codes from reusable software is very likely to occur. The following part describe the 

programming approaches for meta-heuristics algorithms development. 

 

2.3. Programming Approaches for Meta-heuristics  

To support easy programming, the use of existing software to build a new software by reusing 

or modifying the provided codes has been a common practice in software[9]. To date, there 

exist many kind of software tools that support codes and generally, the two common 

programming approaches provided by the software are graphical user interfaces (GUI) or text 

programming language. Each of these provides a functionality that a programmer can use for 

their own purposes, but in slightly different forms and each is associated with benefits and 

drawbacks.  

GUI is a programming approach operated at the front-end of reusable software, which 

performs operations in a drag-drop programming environment. GUI is very easy and 

convenient, but it is clumsy and has a strict rigidity to pre-defined functions of a software library 

or framework [10]. For meta-heuristiscs based application, usually GUI is used as a medium 

interface for algorithm and experimental configurations, or to display optimization results with 

visuals such as graphs and charts, for examples in rapid software like HotFrame [11], iOpt[12], 

HeuristicLab[13], JCLEC [14] and Opt4J[15].  Researchers in  [16] provides an extensive 

reviews of the meta-heuristics software tools and clearly highlight about the limitation of GUI 

programming approach to support easy programming for meta-heuristics mainly for 

hybridization of different algorithms.  

Furthermore, text programming language like JAVA and C++ have more flexibility than 

GUI for software extension. Once a developer is familiar with the programming language used 

in reusable software, they can be very productive for a variety of software creations.  Text 

programming language are known as a highly efficient language and usually being used for 

developing back-end software libraries or software frameworks. Nevertheless, programmers 

must have a good programming skill as text programming languages are more difficult than 

GUI programming approach. The programs can be very lengthy, which disadvantage users to 

directly used the programs for publication or documentation. Alongside this, GUI is limited in 
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providing the precise textual codes. As discussed previously, to convey information with GUI 

sometimes demands more pages than textual codes. When considering to support both easy and 

concise programming, scripting based programming language should be considered as the best 

programming platform. Scripting language is a text-based programming but is simpler and has 

lesser codes than JAVA and C++.   

 

3.  THE PROPOSED SCRIPTING LANGUAGE    

The scripting language proposed in this paper was an extension from the JACIE (Java-based 

Authoring Language for Collaborative Interactive Environments) [17] scripting language 

software framework.  The JACIE consists of an intermediate compiler that allow new language 

specifications to be constructed. The compiler translates the propose scripting language into 

another JAVA codes for the execution. The enhancements have been done to allow the 

inclusions of new scripting language constructions for meta-heuristics, the hybridization and 

FLP.  Details about the JACIE enhancement for the meta-heuristics hybridization that used 

PSO-GA is described in our previous paper [16].  The overall software architecture is divided 

into front-end scripting language, intermediate compiler and the back-end software framework. 

The scripting language will be converted into JAVA codes by the JACIE compiler. These 

JAVA codes can be implemented in the JSwarm [18] software framework.  The proposed 

scripting language described in the paper is divided into five components namely general, PSO 

Update, GA crossover, GA mutation and Dynamic parameterizations. One of the main element 

in the general component is problem specification. Figure 1 presents the syntactic 

specifications of the general component with problem specification for FLP.  

 

 

 

   

 

Fig.1. The compiler specifications for FLP in the general component 

 

The general components are comprised of the predefined implementation framework [19] that 

has been used as a keyword for identifying the hybridization model. Developer can choose one 

from the three hybridization models and also allowed to choose the single PSO. The relevant 

parameters are governed by string variable ^AlgoName, integer variable ^ExperimentNum, 

integer variable ^IterationNum and integer variable ^PopulationSize.  

 

SGMutation | SGCrossover | SGCrossMutation | SinglePSO 

[Name ^AlgoName][ENum ^ExperimentNum] 

  [ITER ^iterationnum][PSize ^popSize] 

SEARCHSPACE[particle ^particle][Dim ^particle dimension] 

PROBLEM[^FLPmodel |userdefined] [min ^ Min(distance|cost)] 
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Other important elements in the general specifications are search space and problem. 

SEARCHSPACE and PROBLEM are the two keywords used for defining the related parameters 

such as the solutions representation and the dimension of particles for the PSO in the search 

space. For defining the FLP model, the language keyword is PROBLEM and the parameters 

can be used to set the FLP model either QAP, MIP or GraphTheory followed with the problem 

objective governed by a Boolean variable ^Min (default min=true). The variable ^ModelName 

calls the related predefined FLP formulation available at the back-end software library. A more 

flexible option for problem definition is userdefined that permits user to insert new user-defined 

codes segment, providing programmers with the capability to incorporate new formulation of 

FLP.  

 

3.1 Compilation error 

The JACIE compiler have been provided with some mechanisms for checking any errors that 

the programmer may possibly codes. During its first phase of lexical analysis, the compiler 

checks all the tokens for the language. There are more than 300 tokens have been created in 

JACIE with more than 50 tokens are specifically used for the hybridization of PSO-GA. A 

programmer tends to make mistakes in writing tokens for example, missing comma, 

uncomplete parenthesis or wrong spelling for keywords. All results in an error detected by the 

lexical analyser forces the JACIE compiler to stop the execution. Once the scripts codes are 

starting to be compiled, JACIE processes the token specifications into a token table so that the 

compiler can check on all the tokens found in the program. Figure 2 is an example screen shot 

in compiling a program that has the error of wrong typing of keyword at line two. Once error 

has been found, JACIE stop the compilation process by displaying the line with error. 

 

 

Fig.2. Lexical errors 

 

3. THE SCRIPTING LANGUAGE CODES 

The paper describes the codes of the scripting language that used to solve FLP problems based 
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on meta-heuristics PSO-GA. Our previous papers in [8] have reported about the functional 

evaluations of the scripting language that compared the optimization results of different PSO-

GA hybrids and single PSO developed with the scripting languages and JAVA programming 

language. The optimization results for all algorithms generated from the scripting language 

codes are almost equivalent with the results generated from JAVA codes. 

Figure 2 presents the complete scripting codes for solving FLP with QAP model and to 

use PSO-GA hybrid. The PSO-GA hybrid includes both crossover and mutation operations 

from the GA into the PSO. The scheme name is SGCrossMutation with Time-vary Crossover 

Mutation (TCMR). Our previous paper in [20] explains time-vary parameterizations of the PSO-

GA hybrid. 

 

 

 

 

 

 

 

 

 

Fig.2. The complete codes with the scripting language 

 

The codes begin with JACIE keyword and the main body must enclose with open and 

close curly brackets. The scripting codes are much simpler than the JAVA codes in JSWARM 

software framework.  Figure 3 presents the JAVA codes.  The number of non-space characters 

written with the scripting language codes and with the JAVA are 320 and 2398 respectively. 

The scripting codes are very wordless but presentable enough to convey information about the 

algorithm flow and configurations.  To compare the output, the total minimum distances of the 

FLP from the algorithm developed with the scripting language platform is 21499, which is 

within the range of results produced from the JAVA codes (21474). Therefore, the scripting 

language is workable to produce the desired results. 

Based on the codes comparison, it can be concluded that the scripting language provides 

benefits to support easy programming environment for rapid prototyping and testing PSO-GA 

hybrid in solving the FLP. The proposed scripting language is easy to use because it is wordless 

with simple and straightforward statements to be used and comprehended by non-expert 

JACIE{ 

SGCrossMutation(Name TCMR, ENum 40,ITER 3000, PSize 40); 

SEARCHSPACE(particle, dim 30); 

PROBEM(FLP(QAP), min(distance)); 

UPDATE (inertia[const 0.4],c1[const 2],c2[const2],MaxP 10.0, MinP -5, MaxV 

10, MinV 

5); 

Crossover (Crate[time-vary LD 0.6 1.0], C_operation[pbest], 

Soperation[roulettwheel]); 

Mutation(Mrate const 0.1, M_operation[Gaussian]); 

} 
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programming users. The statements and keywords are thoroughly designed to be closely alike 

to the relevant components of PSO, GA and FLP. Additionally, it has very small number of 

symbols, only with comma, semicolon, parenthesis and bracket. More important, the symbols 

and keywords are distinguishable each other in relation to different purposes. For example, 

Mrate and Crate are used for representing mutation rate and crossover rate respectively. 

Semicolon means to end a statement, curly bracket is used to begin and end the program, 

parameters of each statement are separated with comma within open and end parenthesis. Also, 

it uses common symbols for comment as used in the JAVA and C++ languages. To keep the 

codes easily understandable and to encourages algorithm designers to use abstractions for 

algorithmic variation, no conditional and repetition statements are included within the scripting 

code unless users must create new problem to be solved. 

 

4.0 CONCLUSION 

This paper provides general descriptions about the implementation of PSO-GA hybrids with 

scripting language programming platform in solving FLP.  Compared to JAVA, the scripting 

language constructs has simple and concise statements, which facilitates fast prototyping for 

algorithm development and testing. However, the scripting language evaluation provided in this 

paper is not very informative to present the language readability or usability. A better approach 

in future work would have been to have human testing to test their comprehension with the 

terms used. A demographic analysis would also be possible to identify the users backgrounds, 

including variables such as the level of users understanding on FLP, PSO and GA as well as 

the type of reusable they use in the development and their programming skill.  
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Fig.3. The main JAVA codes within JSwarm Software Framework 

 

 

import java.io.*;import net.sourceforge.jswarm_pso.*; 

class TCMR{public static void main(String[] args) { 

 double bestf=0.0; double stddev=0.0;double ch=0.0; Mutator mutator; Particle particles[];double 

evolspeed =0.0;double aggregation =0.0; 

   ParticleUpdate particleUpdate; int numofexperiments = 30; Selection selection; onepointcrossover 

crossover;pbestcrossover crossover1; 

   Particle particle1,particle2,Offstring;int conv=0;int avgconv=0;int totalconv=0;double prevfitness= 

0.0; double nextfitness=0.0; double[] chibestf = new double[numofexperiments]; 

for(int z=0;z<numofexperiments;z++){ 

 Swarm swarm = new Swarm(40, new MyParticle(), new MyFitnessFunction()); 

    swarm.setInertia(0.9); swarm.setGlobalIncrement(2.0); 

swarm.setParticleIncrement(2.0);swarm.setMaxPosition(10); swarm.setMinPosition(-

5);swarm.setMaxMinVelocity(10); 

    mutator = new Gaussianmutator(swarm);int numberOfIterations =2000; 

    double[] convergencearray = new double [numberOfIterations]; 

   double totalfit=0.0;double meanfitness=0.0; 

   double s=0.1;double inertia=0.0; double h=0.1; 

       int numofparticle = swarm.getNumberOfParticles(); 

for (int i = 1; i < numberOfIterations-1; i++) { 

 Swarm.initialization();swarm.evaluate(); selection = new Selection (swarm);  

  particle1 = selection.rouletewheel(); 

   particle2 = selection.rouletewheel(); double gbest = swarm.getBestFitness(); 

    for(int j=0;j<numofparticle;j++){ 

       TimeVary  TV = new TimeVary(gbest); 

                      double velocity[] = swarm.getParticle(j).getVelocity() ; 

                      double positionvalue[] = swarm.getParticle(j).getPosition(); 

      double fitness = swarm.getParticle(j).getFitness(); 

      double isavalue = adap3.ISA(positionvalue[1],fitness); 
                  inertia = 1 - ( 0.3 * (1/(1+ Math.exp(-(isavalue))))); 

                     double pbest1=particle1.getFitness(); 

                     double pbest2=particle2.getFitness(); 

       crossover = new pbestcrossover(particle1, particle2); 

      double crate=inertia; 

      double cprob = crossover.probability(crate); 

                    Offstring = crossover.crossoverallposition(cprob); 

     double mrate=inertia; 

     double x = mutator.probability(swarm, mrate); 

      mutator.mutatorallposition(swarm, x); 

                               mutator.mutatorallpositionoperation(swarm, x,inertia); 

      swarm.update();} 
convergencearray[i-1] = new Double(swarm.getParticle(idxBest).toString());  } 

  

   for(int cv=numberOfIterations-3; cv>=1;cv--)     

       {prevfitness=convergencearray[cv]; 
           if(cv+1 != 0) 

             nextfitness=convergencearray[cv-1]; 

          else nextfitness=convergencearray[cv];      
     if (prevfitness != nextfitness)break;conv=cv;  } 

  System.out.println(swarm.toStringStats()); 

  System.out.println("Convergence at iteration" + conv); 

chibestf[z] = swarm.getParticle(swarm.getBestParticleIndex()).getBestFitness(); totalconv += conv; 

} 
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