MEASUREMENT OF QUALITY COST TOWARDS SUCCESSFUL COMPLETION OF A PROJECT

By AHMAD HAFIZUL BIN ZAINAN

Report is submitted as the requirement for the degree of Bachelor Engineering (Hons) (Civil)

UNIVERSITI TEKNOLOGI MARA APRIL 2007

DECLARATION BY THE CANDIDATE

I am Ahmad Hafizul Bin Zainan, Uitm no. 2004362951 confirms that the work is my own and that appropriate credit has been given where reference has been made to the work of others.

ACKNOWLEDGEMENT

In preparing this thesis, I would like to thanks and acknowledge all the peoples that have

contributed towards my understanding and thoughts. I wish to express my appreciation

to my supervisor, Mr Abdul Rahman Bin Ayub, Head Devision of Construction

Engineering and Project Management, Faculty of Civil Engineering, Universiti

Teknologi Mara Pulau Pinang for his guidance, advices and motivation. This

acknowledgement also to Pn Tengku Muhaini Tuan Mat, Coordinator of Information

Technology and Science Quantitative, Universiti Teknologi Mara Pulau Pinang for her

advice, careful guidance and comments toward the accomplishment of this thesis.

Not to forget to all contractors in Pulau Pinang on cooperation in providing much useful

information to the thesis.

I am also to express my fully thankful to my parent for their encouragement and

motivation. My appreciation also extends to all my colleagues who have provided

opinion, advices and most important a moral spirit to finish this thesis. I hope that I had

fulfilled the tasks in doing this thesis.

AHMAD HAFIZUL BIN ZAINAN

(ARRIL 2007)

111

TABLE OF CONTENTS

CHAPTI	ER		PAGE
DECLARATION			ii
ACKNOWLEDGEMENT			iii
LIST OF FIGURES			x
LIST OF TAI	BLES		xi
LIST OF CHARTS			xiv
LIST OF ABBREVIATIONS			xv
LIST OF APPENDIX			xvi
ABSTRACT			xvii
CHAPTER			PAGE
1	RESE	EARCH DIRECTION	
	1.1	General Introduction	1
	1.2	Problem Statement	3
	1.3	Objectives	4
	1.4	Scope of Work	4
	1.5	Significant of the research	4
	1.6	Research Organization	5

CHAPTER			PAGE
2	LIT	ERATURE REVIEW	
	2.1	Introduction	6
	2.2	The Meaning of Quality	7
	2.3	Defining Quality Costs	8
		2.3.1 Prevention Costs	9
		2.3.2 Appraisal Costs	10
		2.3.3 Internal Failure Costs	10
		2.3.4 External Failure Costs	11
	2.4	Quality Cost Measurement System	11
	2.5	Previous Studies	12
		2.5.1 The Process Cost Model	14
		2.5.2 Quality Cost Matrix	15
	2.6	Project Quality Parameter	15
		2.6.1 Financier Parameter	16
		2.6.2 Owner Parameter	16
		2.6.3 Contractor Parameter	16
		2.6.4 Consultant Parameter	17
		2.6.5 Coordination Parameter	17
		2.6.7 Environmental Parameter	17
	2.7	Buildability Concept in Quality Cost	18
	2.8	ISO 9000 Quality Management Systems	19
		2.8.1 Application of ISO 9000 and Quality Cost	20

CHAPTER			PAGE
	2.9	Decrease of Quality Cost	21
		2.9.1 Decreasing Failure Costs	21
		2.9.2 Decreasing Prevention Costs	22
		2.9.3 Decreasing Appraisal Costs	22
	2.10	Uses of Quality Cost	22
		2.10.1 Quality as Business Parameter	23
		2.10.2 Performance Measures	23
		2.10.3 Planning and Controlling Costs	24
3	MET	THODOLOGY	
	3.1	Introduction	26
	3.2	Research Process	27
		3.2.1 First Component	27
		3.2.2 Second Component	27
		3.2.3 Third Component	29
		3.2.4 Fourth Component	30
		3.2.5 Fifth Component	30
		3.2.6 Six Component	30
		3.2.7 Final Component	31
	3.3	Conceptual Framework	31

CHAPTER PAGE

4 ANALYSIS OF DATA AND RESULTS

4.1	Introduction	35	
4.2	Descriptive Statistics	35	
	4.2.1 Frequency Analysis	35	
4.3	Contractor Analysis	36	
	4.3.1 Contractor Analysis by Grade of CIDB	36	
	4.3.2 Contractor Analysis by Status of Company	38	
	4.3.3 Contractor Analysis by Duration Involvement	39	
	in construction industry		
	4.3.4 Respondents Analyses	41	
4.4	Analysis on Extra Measures to Expedite Work Schedule	43	
4.5	Data Analyses for Project Quality Parameter	44	
	4.5.1 Frequency Analysis on Project Quality Parameter (A)	46	
	4.5.2 Frequency Analysis on Project Quality Parameter (B)	47	
	4.5.3 Frequency Analysis on Project Quality Parameter (C)	48	
	4.5.4 Frequency Analysis on Project Quality Parameter (D)	49	
	4.5.5 Frequency Analysis on Project Quality Parameter (E)	50	
	4.5.6 Frequency Analysis on Project Quality Parameter (F)	51	
	4.5.7 Frequency Analysis on Project Quality Parameter (G)	52	
	4.5.8 Frequency Analysis on Project Quality Parameter (H)	53	
	4.5.9 Frequency Analysis on Project Quality Parameter (I)	54	
	4.5.10 Frequency Analysis on Project Quality Parameter (J)	55	

CHAPTER PAGE

	4.5.11 Frequency Analysis on Project Quality Parameter (K)	56
	4.5.12 Frequency Analysis on Project Quality Parameter (L)	57
	4.5.13 Frequency Analysis on Project Quality Parameter (M)	58
	4.5.14 Frequency Analysis on Project Quality Parameter (N)	59
	4.5.15 Frequency Analysis on Project Quality Parameter (O)	60
	4.5.16 Frequency Analysis on Project Quality Parameter (P)	61
	4.5.17 Frequency Analysis on Project Quality Parameter (Q)	62
	4.5.18 Frequency Analysis on Project Quality Parameter (R)	63
	4.5.19 Frequency Analysis on Project Quality Parameter (S)	64
	4.5.20 Frequency Analysis on Project Quality Parameter (T)	65
	4.5.21 Frequency Analysis on Project Quality Parameter (U)	66
	4.5.22 Frequency Analysis on Project Quality Parameter (V)	67
	4.5.23 Frequency Analysis on Project Quality Parameter (W)	68
	4.5.24 Frequency Analysis on Project Quality Parameter (X)	69
4.6	Central Tendency and Dispersion Analysis	70
4.7	Analysis Data using Contribution Weightage Formula	75
4.8	Results	78
DISCU	SSIONS	
5.1	Introduction	81
5.2	Review of the Findings	81

5

СНАРТЕ	R		PAGE
	5.3	Discussion on the Results	83
		5.3.1 Quality of Raw Material	83
		5.3.2 Site Management and Organization	84
		5.3.3 Fraudulent Practises and Kickback	85
6	CON	CLUSIONS AND RECOMMENDATION	
	6.1	Introduction	87
	6.2	Conclusion for the Findings	89
	6.3	Recommendations for Future Development	91
REFERE	ENCES		93
APPENI	OIX A: S	SAMPLE OF QUESTIONNAIRE	97
APPENDIX B: SAMPLE OF NEWSPAPER CUTTINGS			102
APPENI	OIX C: S	SPSS 13.0 OUTPUT	110

ABSTRACT

This research measures quality cost towards successful completion of a project in construction industry. A successful completion of a project refers to the project that is completed within time, cost and meets the required quality. The construction industry is one of the productive sectors that constantly contribute to the economy. In construction industry, activities are typically divided into functional areas, which are performed by different disciplines example architect, engineers and contractors. Each discipline makes decisions without considering its impact on others. As a result, this leads to time waste, unnecessary cost, increased errors, and misunderstanding, and thus rework, which has been found to be primary factor of time and cost overruns in construction industry. In this research, the samples consist of 60 contractors in Pulau Pinang. The data was collected using self-administered questionnaire. SPSS Version 13.0 and Contribution Weightage Formula were used to analyses the data. In this research, the project quality parameters will be identified and presented into level or ranking It was found that Quality of Raw Material was the main project quality parameter affecting on quality cost. Then it was followed by Site Management and Organization. Fraudulent Practices and Kickback was the least affecting on quality cost. Other project quality parameters are cost monitoring and control, cooperation of all parties in the project, time emphasis in construction process, selection of project manager with proven track record, monitoring and feedback by client, project cost estimation, government permits and approval, size and value of the project, project environment assessment, safety awareness on site, financial problems, adequate modern equipment and machineries, well defined project scope and objective, project social assessment, climatic condition at site, improper project design, poor labour skill, excessive change order, disputes resolution. This research will benefit for contractors in measure the quality cost towards successful completion of a project. This study also provides recommendations and suggestions for future research development.